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CHAPTER 1

STATUS OF EFFORT

1.1 Areas of Research

Accomplishments have been made in the following eight areas of research related

to robust, fixed-structure control system design and analysis:

1. A comparison of descent and continuation techniques for H, optimal reduced-
order control design and an investigation of the best bases in which to represent
the reduced-order controller.

2. The formulation of robust, fixed-architecture control design in terms of a Ric-
cati equation feasibility problem and the development of probability-one ho-
motopy algorithms for its solution.

3. The implementation of probability-one homotopy algorithms for the synthesis
of fixed-architecture robust controllers with H, or H, performance and a com-
parison between the algorithms and controllers for H, and H,, performance
using a benchmark problem.

4. The formulation of robust, fixed-architecture control design in terms of non-
linear matrix inequalities (NMI’s), and the development of continuation algo-
rithms for the solution of these NMI’s.

5. The development of algorithms for the design of optimal, fixed-structure output
feedback controllers for nonlinear systems.

6. The development and implementation of an object-oriented programming ap-
proach for the implementation of interior point methods to solve linear matrix
inequalities (LMI’s).

—
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7. The development of parallel processing techniques to implement probability-

one homotopy algorithms for reduced-order H,/H,, control design.

8. The formulation of robustness analysis tests for discrete time systems, in the

delta-domain using fixed structure multipliers.

In the chapters that follow, we motivate each of the areas of research, formulate
the problems, and briefly describe key results. For further details please refer to the

publications below.

1.2 Publications

1.2.1 Thesis and Dissertations
1. Sadhukhan, D., “Development of Algorithms for Synthesis of Fixed-
Architecture Robust Controllers”, Ph.D. Dissertation, Dept. of Mechanical
Engineering, Florida A&M /Florida State University, 1998.

1.2.2 Refereed Journal Publications
1. E. G. Collins, Jr., W. M. Haddad, V. S., Chellaboina, and T. Song, “Robustness
Analysis in the Delta-Domain using Fixed-Structure Multipliers,” submitted to

International Journal of Robust and Nonlinear Control.

2. E. G. Collins, Jr., W. M. Haddad, L. T. Watson, and D. Sadhukhan,
“Probability-One Homotopy Algorithms for Robust Controller Synthesis with
Fixed-Structure Multipliers,” International Journal of Robust and Nonlinear
Control, vol. 7, pp. 165-185, 1997.

3. E. G. Collins, Jr. and D. Sadhukhan, “A Comparison of Descent and Continua-
tion Algorithms for H, Optimal Reduced-Order Control Design,” International
Journal of Control, vol. 69, pp. 647-662, 1998.

4. Y. Ge., L. T. Watson, and E. G. Collins, Jr., “Cost-Effective Parallel Processing
for Hy/H,, Controller Synthesis,” submitted to the International Journal of
Systems Science, to appear.
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- Y. Ge, L. T. Watson, and E. G. Collins, Jr., “An Object-oriented Approach to
Semidefinite Programming,” Math. Comput. Appl., to appear.

(2

6. E. G. Collins, Jr., and D. Sadhukhan, “Synthesis of Fixed-Architecture, Robust
H; and H, Controllers,” submitted to the Journal of Dynamics, Systems,
Measurement, and Control.

. E. G. Collins, Jr., and D. Sadhukhan, “Robust Controller Synthesis via Non-
linear Matrix Inequalities,” submitted to the International Journal of Control.

~I

8. E. G. Collins, Jr., D. Sadhukhan, and W. M. Haddad, “Fixed-Structure Nonlin-
ear Optimal Output Feedback Stabilization for Nonlinear Systems,” submitted

to the International Journal of Control.

1.2.3 Refereed Conference Publications
1. E. G. Collins, Jr., W. M. Haddad, and L. T. Watson, “Fixed-Architecture,
Robust Control Design Using Fixed-Structure Multipliers,” Proceedings of the
International Federation of Automatic Control, Vol. C, San Francisco, CA, pp.
73-78, June 1996.

2. E. G. Collins, Jr. and D. Sadhukhan, “A Comparison of Descent and Continu-
ation Algorithms for H, Optimal Reduced-Order Control Design,” Proceedings
of the American Control Conference, pp. 3447-3448, 1997.

3. Y. Ge., L. T. Watson, and E. G. Collins, Jr., “A Distributed Algorithm for
H,/H Controller Synthesis,” Proceedings of the 1996 IEEE Conference on
Decision and Control, Kobe, Japan, pp. 1317-1318, Dec., 1996.

4. E. G. Collins, Jr. and D. Sadhukhan, “Synthesis of Fixed-Architecture, Robust
H, and H,, Controllers,” Proceedings of the American Control Conference, pp.
3510-3514, 1997.

5. E. G. Collins, Jr. and D. Sadhukhan, “Robust Controller Synthesis via Non-
linear Matrix Inequalities,” Proceedings of the American Control Conference,
pp. 67-71, 1997.
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6. E. G. Collins, Jr., W. M. Haddad, V. S., Chellaboina, and T. Song, “Robustness
Analysis in the Delta-Domain Using Fixed-Structure Multipliers,” Proceedings
of the 1997 IEEE Conference on Decision and Control, San Diego, CA, pp.
3286-3291, Dec. 1997.

7. E. G. Collins, Jr. and D. Sadhukhan, “Robust Control for a Benchmark Prob-
lem via Nonlinear Matrix Inequalities,” the 1998 American Control Conference,

to appear.

1.3 Personnel Supported

Faculty

Dr. Emmanuel G. Collins

Dr. Yuzhen Ge (Butler University)
Graduate Students

Mr. Debashis Sadhukhan

Mr. Song Tinglun

1.4 Interactions and Transitions

e Presented papers at the 1995, 1996 and 1997 IEEE Conference on Decision and
Control, the 1996 International Federation of Automatic Control, and the 1997
and 1998 American Control Conference.

1.5 Honors and Awards

e Prior to grant Dr. Collins received an Honorary Superior Accomplishment
Award for “Contributions in demonstrating active control of flexible space-
craft,” NASA Langely Research Center, August 1991.

e During the grant Dr. Collins received The Florida State University Developing
Scholar Award, April 1997.
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CHAPTER 2

A COMPARISON OF DESCENT AND CONTINUATION
ALGORITHMS FOR H; OPTIMAL, REDUCED-ORDER CONTROL
DESIGN

2.1 Introduction

One of the deficiencies of modern control laws, developed by simply solving a pair
of decoupled Riccati equations, in particular, globally Hy optimal (or LQG) control
and standard full-order suboptimal H,, control, is that the resultant control laws
are always of the order of the design plant. These techniques, though relatively easy
to implement computationally, do not allow the designer to constrain the architec-
ture (e.g., order or degree of centralization) of the controller. Such constraints are
often necessary in engineering practice due to throughput limitations of the control
processors. Reduced-order control is therefore of paramount importance in practi-
cal control design. This chapter focuses on the design of H, optimal, reduced-order
controllers.

Two main approaches have been developed to solve the H, optimal, reduced-order
design problem. The first approach attempts to develop approximations to the opti-
mal reduced-order controller by reducing the dimension of an LQG controller (Yousuff
and Skelton 1984a, Yousuff and Skelton 1984b, Anderson and Liu 1989, Villemagne
and Skelton 1988, Liu et al. 1990). These methods are attractive because they
require relatively little computation and should be used if possible. Unfortunately,
they tend to yield controllers that either destabilize the system or have poor per-
formance as the requested controller dimension is decreased or the requested control
authority level is increased. Hence, if used in isolation, these methods do not yield
a reliable methodology for reduced-order design. In addition, these methods do not

- - ——
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extend to the design of decentralized controllers. However, it should be mentioned
that, in regards to reduced-order control design, the indirect approaches at worst
are valuable in providing good initial conditions for the direct approaches described
below.

In contrast to controller reduction, direct approaches attempt to directly synthe-
size an optimal, reduced-order (or decentralized) controller by a numerical optimiza-
tion scheme. There are two main classes of parameter optimization approaches to
direct control design. The first class relies on the use of descent methods (Kramer
and Calise 1987, Kuhn and Schmidt 1987, Kwakernaak and Sivan 1972, Ly et al.
1985, Mukhopadhyay 1982, Mukhopadhyay 1987, Voth and Ly 1991). Algorithms
in this class reduce the Hj cost at each iteration. For an excellent survey of descent
methods as applied to output feedback problems (including methods not included
in this chapter), please refer to Makild and Toivonen (1987), and references therein.
The second class relies on the use of continuation methods (Collins et al. 1995,
Mercadal 1991). In contrast to the descent methods, the H, cost is not necessar-
ily reduced at each iteration. It should be mentioned that continuation algorithms
(Collins et al. 1996b) have also been developed to solve the “optimal projection
equations,” a set of four coupled Lyapunov and Riccati equations that characterize
the H, optimal, reduced-order compensator. Finally, the recently developed LMI-
based synthesis methods for the reduced-order control design problem (see Oliveira
and Geromel (1997), and references therein), show much promise. However, these
approaches will not be considered here.

From a practical design perspective it is important to determine which class of
methods tends to be more numerically robust. As with the vast majority of numer-
ical methods for nonconvex optimization problems, answers to these questions are
extremely difficult tovprove analytically. Instead, we must rely on numerical experi-
mentation to observe trends. Hence, in this chapter the behavior of some standard
globally convergent descent methods (i.e., steepest descent, conjugate gradient and
BFGS Quasi-Newton) (Fletcher 1987) are compared to the corresponding behav-
ior of the continuation algorithm of (Collins et al. 1995) by considering design for
three reduced-order control design problems appearing in the literature. The Newton

method is not considered here since it is not a globally convergent descent method for
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nonquadratic cost functions. However when suitably modified it displays good con-
vergence properties (Mékild and Toivonen 1987, Toivonen and Mékila 1987, Beseler
et. al. 1992).

2.2 H, Optimal, Reduced-Order Dynamic Compensation

2.2.1 Problem Formulation

Consider the system

£(t) = Az(t) + Bu(t) + Dyw(t) (2.1)
y(t) = Cz(t) + Du(t) + Daw(t) (2.2)
2(t) = Ez(t) + Eyult) (2.3)

where w € R™ is white noise with unit intensity, z € R"™, u € R™, y € R™,
z € R™, D, has full row rank, and E, has full column rank. We desire to design a
n* order dynamic compensator,

j;c(t) = Acxc(t)‘I'ch(t) (24)
u(t) = —Cez(t) ' (2.5)

where n, < n;, which minimizes the steady state performance criterion

T(Ac, B, Co) 2 Jim B (9)2(1) (26)

The state-space evolution of the closed-loop system corresponding to (2.1)-(2.5)
is described by

#(t) = Az(t) + Dw(t) (2.7)
where
s | () a | A ~-BC, - | Di
‘”(t)"[xc(t)]’ = Be Ac-—BcDCcJ’ P=lsp, | @

To guarantee that the cost J is finite and independent of initial conditions we
restrict our attention to the set of stabilizing compensators, S, = {(A., B., C) : A
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is asymptotically stable}. Assume (A, B,,C.) € S, and define Q € R=*ne)x(nz+nc)
to be the closed-loop steady-state covariance, i.e.,

0=AQ+ QAT +V (2.9)
where

Vi VBT
BV} B.V,BT

A

}, Vi 2D/"Dy, Vi222D\"D;, V, = D,"D,. (2.10)

(Note that since D, has full row rank, V2 > 0.) The cost function J can now be
expressed as
J(A., B,,C., Q) = trQR. (2.11)

where

~ A[ Bo — RuCe | poopTp  R,2_pTH, Ry £ E,"E,.(2.12)

| CTRY, CTR,C,

(Note that since E; has full column rank, R; > 0.) The objective is to minimize the
cost function J subject to the constraint (2.9).
The Lagrangian L is defined by

L(A., B.,C.,Q,P) £ trQR + tr[P(AQ + QAT + V) (2.13)

where P is the Lagrange multiplier matrix. The compensator (4., B, C,) is optimal
if it satisfies the stationary conditions

oL oL oL
(')AC_O’ ch_o,_ aCc_O’ (2.14)
oL ™
— =ATP+PA+R=0, 2.15
5 (215)
and Py
3= AQ+ QAT +V =0. (2.16)

Both the descent and continuation algorithms aim at finding (A, B, C,) € S, that
satisfy the above conditions.




9

Subsequently, we will represent the controller by a parameter vector §. When the
controller is not constrained to any basis, the parameter vector 6 is given by

vec(A,)
0= vec(B,) |- (2.17)
vec(C,)

Note that when the controller is constrained to a basis, 6 contains only the free
parameters of the controller matrices and hence, in general, is a subset of 2.17. Let
the mapping from a state space representation of a controller (4, B, C.) to the
~ parameter vector 6 be given by g¢(-), such that

0 = g(A., B, C,) (2.18)

and define
0 ={0=g(A.,B.,C,): (A.,B,C,) € S.Ndom(g)} (2.19)

Now, assuming 6 € ©, the H cost functional and the corresponding Lagrangian can
be expressed respectively as J(6, Q) and L(6,Q, P). The problem is therefore to find
f € © such that

0 (0, Q P). (2.20)

~ 80
subject to (2.16) and (2.15).

2.3 Parameter Optimization Algorithms

This section first gives a general description of the algorithms corresponding to
the descent methods. It then briefly describes a continuation algorithm. Particular
attention is given to the modification of these algorithms to take into account the
constraint 6 € ©.

2.3.1 Descent Methods
Descent methods are designed to search for solutions to the unconstrained opti-

mization problem
moin J(6). (2.21)

The user is required to supply an initial parameter vector 6. A descent algorithm
then has the following structure.

- - —
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A Descent Algorithm

1. Let £ =0.
2. Determine a search direction d.

3. Use a one dimensional line search to find oy that minimizes J(6; + ady) with

respect to a.
4. Set 0k+1 = 9k -+ Ozkdk

5. If the gradient %(&H) is sufficiently small, then let the optimal solution 6* =
0r+1 and stop, else let k =k + 1 and go to Step 2.

Alternative descent methods differ primarily in the way they compute the de-
scent direction di¢. For example, in the steepest descent method d; corresponds to
the negative of the gradient. Conjugate gradient and Quasi-Newton methods com-
pute dr using only cost and gradient information while Newton’s method requires
computation of the Hessian matrix. Note that for the H, optimal, reduced-order
control problem it is not difficult to show that if (2.16) and (2.15) are satisfied, then

the gradient satisfies
0J oL

80— 96
Hence, the gradient may be computed by constructing and differentiating the La-

(2.22)

grangian.

Recognize that the H, optimal, reduced-order control problem is not the uncon-
strained optimization problem (2.21) but is actually the constrained optimization
problem

min J(6) (2.23)

where © is defined by (2.19). One way to take into account the constraint § € ©
is to modify the line search subalgorithm of Step 3 to ensure that if 6, € ©, Or41 is
also in ©. (It is assumed that 6, € ©).

The descent algorithms compared in this chapter use the modified line search al-
gorithm of Kuhn and Schmidt (1987). The fundamental idea consists of decomposing

the values of the line search parameter « into three regions:

- - —"
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1. [0,a}]: left of minimum
2. [af, a;p): right of minimum, stable
3. [ayp, 00): unstable

where o] denotes the minimum and «;, denotes the stability boundary. The al-
gorithm finds an o;; € [0,¢}] and an a;3 € [af,a;). The minimum, a;,, of an
approximating cubic interpolant, is then used to subdivide the interval [o;;, a;o]. For
the sub-interval a new a;;, can be found. This process is continued until no significant

improvement in the approximation to the minimum step size can be achieved.

2.3.2 Continuation Methods

Continuation techniques can be used to solve the zero finding problem
0= £(6), (2.24)

where f : R? — RP. In the context of H, optimal, reduced-order control, (2.24)
corresponds to (2.20). Continuation techniques work by finding a C? function H :
RP x [0,1) — RP that satisfies certain properties, including the following:

1. H(6,1) = f(6);
2. 0= H(6,0) has an easily found or known solution 6.

They then trace the zero curve described by
0=H(9,)), Xe[0,1). (2.25)

This is accomplishéd by differentiating (2.25) with respect to A to obtain Davidenko’s
differential equation ' '

0 = Hy(6, ) + Hy(6, \)0x(N) (2.26)

where Hy = 82 Hy = 98 and 0y £ £, which together with 6(0) = 6, defines an
initial value problem. Predictor-corrector, numerical integration schemes are then
used to solve this initial value problem, that is to follow the curve (2.25) from the
solution 6y of 0 = H(6,0) to a solution 8* of 0 = H(#,1). In particular a continuation
algorithm has the following structure.
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A Continuation Algorithm
1. Let A =0 and 8()) = 6.

2. Use (2.26) to compute the tangent vector @), such that 6 (\) =
—Hy(60,\)7 HA(6, ).

3. For some A) such that A = A+ A\ < 1, use current and past values of H and
H, to predict (A + AX) by using polynomial curve fitting.

4. Let A <~ A+ AX and 6, be the prediction of ().
5. For k =0,1,2,... until convergence, do
Ors1 = O — Ho(Bk, )) 104
Then, let 6(A) = O;.
6. If A < 1, go to Step 2, else if A = 1, then let the solution §* = #()) and stop.

The initializing controller 6 in the algorithm for H, optimal, reduced-order
control is usually found by applying a controller reduction method such as bal-
anced controller reduction (Yousuff and Skelton 1984a) to a low authority LQG
controller (Collins et al. 1995, Collins et al. 1996a) since this usually yields a
nearly optimal, reduced-order controller. The initial weights (R;)o, (Ri2)e, (R2)o,
(1o, (Vi2)e, (V2)o corresponding to the low authority LQG controller are then de-
formed into the desired weights along the homotopy path. The reader is referred to
(Collins et al. 1995) for further details.

The algorithm of (Collins et al. 1995) also assumes that the prediction 8(A+AM\) €
O such that it corresponds to a controller that stabilizes the closed-loop system. If
0(A+AX) ¢ ©, then the algorithm reduces the size of AX. In particular, AX « ZAM

2.4 Numerical Examples

2.4.1 Description of Problems

The first problem is a noncollocated axial vibration control problem involving
an axial

beam with four circular disks attached. This problem was introduced in
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(Cannon and Rosenthal 1984) and also studied in (Collins et al. 1995). The plant is
8th order while we consider the design of a 4th order controller.

The second problem was introduced in (Ly et al. 1985) and involves flight control
for a NAVION aircraft. The model is 7th order and we consider the design of a 4th
order controller.

The third problem was introduced in (Martin and Bryson 1980) and involves
vibration control of a flexible spacecraft. The model is 6th order while we again
consider the design of a 4th order controller.

It may be advantageous to keep the dimension of the optimization variable small.
Hence the effect of constraining the controller to three bases: the tridiagonal form, the
second order polynomial form (SPF), and the controllability canonical form (CCF)
is also investigated. We design higher order controllers for all three examples using
the continuation and the BFGS algorithms with the controller unconstrained and
with the controller constrained to the tridiagonal basis, in order to compare the two
bases.

Note that the matrices Ry and V; are multiplied by p which is allowed to change
from 10 to 1 in order to deform the low authority controller to a higher authority
controller using the continuation algorithm. In the case of the descent algorithms p
is fixed at 1.

For each example, a low authority optimal LQG controller (corresponding to
p = 10) is first designed. The order of this controller is then reduced using the
modified balanced controller reduction technique of (Yousuff and Skelton 1984a).
This reduced order sub-optimal controller is then converted into an optimal low
authority controller using a few Newton iterations. This controller is used as the
starting point for both the continuation and descent optimization methods. Both
the BFGS and the conjugate gradient algorithms are implemented with restarts to
make them globally convergent. Convergence is said to have been achieved when the
magnitude of the normalized gradient (£ %Z—”fo,ﬂ) falls below 1072

In both the descent and the continuation algorithms, the gradient calculation is
not optimized. For example, the order of operations in triple matrix products is not
optimized and the fact that the Lyapunov equations (2.15) and (2.16) are transposes
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Method Basis Function | Gradient | Hessian | Mflops | sec
Continuation | Unconstrained 58 58 o8 68.8 | 36.7
Tridiagonal 60 60 60 51 31.5
SPF 351 351 351 178.8 | 110.7
CCF 274 274 274 134 83.3
BFGS Unconstrained 144 183 N/A 41.1 17.5
Tridiagonal 215 276 N/A 60.8 | 24.6
SPF 252 343 N/A 77.4 29.5
CCF 399 036 N/A 117.5 44
Conjugate Unconstrained 490 646 N/A | 1415 | 534
Gradient Tridiagonal 546 716 N/A | 155.5 | 59.2
SPF 1165 1604 N/A 358.8 | 131.2
CCF 5435 7755 N/A 1706.7 | 602.2
Steepest Unconstrained | * 6037 8037 N/A | 1743.8 | 616
Descent Tridiagonal * 6075 8377 N/A | 1831.9 | 641.5
SPF * 6031 8031 N/A 1731.4 | 610.5
CCF * 5997 8498 N/A | 1841.9 | 653.5

Table 2.1: Four Disk Example

of each other are not exploited to reduce computational effort. These numerical

examples have been run on a 120 MHz, Pentium PC.

2.4.2 Observations
A sample of the results obtained are shown in Tables 2.1 and 2.2. The Quasi-

Newton algorithm is more efficient than the continuation method for most cases.

The continuation method is in general more efficient than the conjugate gradient

method. The conjugate gradient method, as expected, is more efficient than the

steepest descent method. The better performance of the Quasi-Newton algorithm

over continuation, becomes more apparent as the dimension of the problem increases.
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Example Basis Function | Gradient | Hessian | Mflops | sec
(Controller Order)
Fourdisk (8" order) | Unconstrained 75 75 75 1261.3 | 220.1
Tridiagonal 63 63 63 2564 | T1.73
Fourdisk (6" order) | Unconstrained 72 72 72 350.1 | 94.3
Tridiagonal 72 72 72 145.8 55.4
Fourdisk (4'" order) | Unconstrained 58 58 58 68.8 | 36.7
Tridiagonal 60 60 60 51 31.6
Navion (7*" order) Unconstrained 692 692 692 11938 | 2007.6
Tridiagonal 592 592 592 | 3753.7 | 930.8
Navion (6" order) Unconstrained 267 267 267 | 2537.3 | 523.2
Tridiagonal 411 411 411 1746 | 506.4
Navion (4'" order) Unconstrained 108 108 108 2344 | 949
Tridiagonal 190 190 190 296.2 | 143.7
Spacecraft (6'" order) | Unconstrained 101 101 101 428 119
Tridiagonal 89 89 89 140.6 | 63.9
Spacecraft (4*h order) | Unconstrained 52 52 52 46.7 | 31.7
Tridiagonal 63 63 63 38.3 30.6

Table 2.2:

Continuation: Unconstrained vs Tridiagonal

The * denotes failure to meet the normalized gradient tolerance within 1000

iterations. This occurs most often in the case of the steepest descent method due to

oscillations close to the minimum, and is a well known deficiency of this method.

The numerical conditioning of the algorithms when using the tridiagonal basis

was better than when using the second order polynomial form (SPF) and the control-
lability canonical form (CCF) and is apparently due to the fact that the tridiagonal

form is a more general representation than SPF and CCF. In fact, SPF is a special

case of the tridiagonal form.

For the continuation algorithms, the run times when the controller is constrained

to the tridiagonal basis are considerably smaller than those for the unconstrained

case. For the BFGS algorithm, the run times for the tridiagonal basis are slightly

© ———
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larger than those for the unconstrained case. However, in both cases, as the con-
troller dimension increases, the size of the parameter vector associated with the
unconstrained “basis” increases much more rapidly than the parameter vector asso-
ciated with the tridiagonal basis. Hence, the convergence times for the tridiagonal
case increases much less rapidly than that for the unconstrained case, as the controller
dimension increases. This effect is more pronounced in the case of the continuation
method than the BFGS method.

2.5 Conclusions

In this chapter three examples have been used to compare the behavior of three
standard descent algorithms with a recently developed continuation algorithm for H,
optimal, reduced-order design. The results indicate that the Quasi-Newton (BFGS)
algorithm is more efficient than the continuation algorithm which in turn is more
efficient than the conjugate gradient and steepest descent algorithms. The second
order polynomial form (SPF) and the controllability canonical form (CCF) are not
very efficient bases and are subject to illconditioning problems. When using a tridi-
agonal basis (as opposed to the unconstrained “basis”), the advantage of a smaller
parameter vector 6, starts to outweigh the disadvantage of reduced numerical condi-
tioning due to a basis constraint, as the order of the controller is increased. Hence,
the tridiagonal basis appears to be an excellent constraint basis for fixed-structure

numerical algorithms.



CHAPTER 3

PROBABILITY-ONE HOMOTOPY ALGORITHMS FOR ROBUST
CONTROLLER SYNTHESIS WITH FIXED-STRUCTURE
MULTIPLIERS

3.1 Introduction

During the past two decades, major advancements have been made in robust con-
trol theory. Building upon H, theory, the structured singular value (SSV) (Doyle
1982a, Packard and Doyle 1993) was defined as a nonconservative robustness mea-
sure for the analysis of linear systems with dynamic, arbitrary phase, multiple-block
uncertainty. The supremum of the structured singular value over nonnegative fre-
quencies is the inverse of the multivariable stability margin (see Safonov (1980),
Safonov and Athans (1981) and the references therein). The initial developments
in structured singular value theory focussed on dynamic uncertainty with arbitrary
phase (often called “complex uncertainty”) and hence, although less conservative
than H,, theory, could still yield very conservative robustness bounds for systems
with parametric uncertainty. This led to the development of mixed (i.e., real and
complex) structured singular value (MSSV) theory (Fan et al. 1991, Young 1993)
which considers block-diagonal uncertainty with both dynamic and real scalar para-
metric elements.

Parallel research addressed the issue of real parameter uncertainty using absolute
stability theory such as Popov analysis (Haddad and Bernstein 1991, 1993, 1995a,
Haddad et al. 1992, 1994c, 1996) and was developed by recognizing the relationship
between sector bounded nonlinearities and interval bounds on linear uncertainties.
This work was soon seen to provide an upper bound for the MSSV (Haddad et al.
1992, 1994c, How and Hall 1993). In fact, in contrast to the initial work on the

- - —
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MSSV, this research provided the first fized-structure multiplier versions of MSSV
theory. A unique contribution of some of this work is that it led to the development
of upper bounds on an H; cost functional over the uncertainty set under consid-
eration. By optimizing this upper bound and using a Riccati equation constraint,
continuation algorithms have been developed for MSSV controller synthesis (How
et al. 1994a, 1994b, 1996). A related algorithm for complex structured singular
value (CSSV) controller synthesis is given in Haddad et al. (1994a). Note that the
H, approach allows the direct design of fixed-architecture (e.g., reduced-order or-
decentralized) controllers and the simultaneous optimization of the controller and
(fixed-structure) multipliers, hence avoiding M-K (i.e., multiplier-controller) itera-
tion schemes. However, to date the synthesis algorithms have been formulated only
for the case of the the Popov multiplier. In addition, the algorithms rely on an
ad hoc initialization scheme, have not used the prediction capabilities obtained by
computing the Jacobian matrix of the homotopy (or continuation) map, and have
assumed that the homotopy curve is monotonic.

A similar line of research has been developed independently in Chiang and Sa-
fonov (1992), Ly et al. (1994), Safonov and Chiang (1993). This work also provides a
fixed-structure multiplier version of the MSSV but, unlike the approach described in
Haddad and Bernstein (1991, 1993), Haddad et al. (1992, 1994c, 1996) this approach
develops multipliers for strictly linear uncertainties. The associated robustness anal-
vsis was originally formulated in terms of a convex, frequency-domain optimization
problem but has recently been reformulated in terms of a (convex) linear-matrix-
inequality (LMI) problem (Ly et al. 1994, Balakrishnan et al. 1994). These results
have led to the recognition that robust control design can be approached via solving
a (nonconvex) “bilinear matrix inequality” (BMI) (Goh et al. 1994a, 1994b, Safonov
et al. 1994). This approach allows the design of fixed-architecture controllers and can
be implemented without using M-K iteration. To obtain a reasonably sized BMI,
the multiplier set must be restricted to lie in the span of a stable basis (Goh et al.
1994a). However, the choice of this basis is unclear and can potentially introduce a
high degree of conservatism. If the less conservative LMI formulation, requiring the
use of unstable multipliers, is used, the resultant BMI is of very high dimension due
to the introduction of a Lyapunov inequality of the dimension of the closed-loop sys-
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tem to ensure closed-loop stability (Safonov et al. 1994). In contrast, the robustness
analysis results using a Riccati equation formulation easily extend to robust control
design without placing any basis restrictions on the multipliers or introducing high
dimensionality.

In this chapter a Riccati equation constraint is used to formulate fixed-
architecture, robust control design methods that use general forms of the fixed-
structure multipliers. The proposed method relies on the development of an artificial
cost function. This cost function also includes barrier functions to enforce positive
definite constraints (e.g., on the Riccati solution P) which allows the constrained
optimization problem (the constraints including P > 0) to be converted into an un-
constrained optimization problem. The cost function is not physically meaningful
so we do not encounter the normal problems associated with making the barrier
functions small at the last step of the optimization process. (See Fletcher (1987) for
a discussion of this negative feature of standard barrier function methods.) If the
barrier terms are ignored and a certain term is added to the cost function, the cost
function becomes an H; upper bound.

Due to the positive definite constraint on the Riccati solution, it is not possible to
approach the solution to the optimization problem using standard descent methods.
Hence, we develop probability-one homotopy algorithms (Watson 1987a, Watson et
al. 1987b) to find the solution. This class of homotopy algorithms is distinct from
classical continuation algorithms (Allgower and Georg 1990) in that they follow the
zero curve using the arc length parameter and not the actual homotopy parameter .
This allows the zero curve to be nonmonotonic in A and provides additional numerical
robustness. In addition, the algorithms developed here can be initialized with any
stabilizing compensator and admissible multiplier, in contrast to the algorithms of
How et al. (1994a, 1994b, 1996), and Haddad et al. (1994a).

3.2 Problem Formulation

Consider the standard uncertainty feedback configuration of Figure 3.1, where

Al|B
G(s) € C™™ is asvmptotically stable and G(s) ~ [ oD ] . It is assumed that the
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(+) 1 O

G(s) .

Figure 3.1: Standard Uncertainty Feedback Configuration
uncertainty A € C™ ™ belongs to the set

14
A, = {A = block-diag(A1, ..., Ap) : A; € i, Omax(Di) < Yyi=1,.0,p, Y ki =m},
=1

(3.1)
where Z; C C*** denotes the internal structure of the uncertainty block A; and
v > 0.

We need to find sufficient conditions such that the negative feedback intercon-
nection of G(s) and A is asymptotically stable (or, equivalently, det(I + G(jw)A) #
0, w € R) for all A € A,. The sufficient conditions for robust stability (and
performance) have been formulated as a Riccati equation feasibility problem and
continuation algorithms have been developed to solve these problems. Below, we

briefly present some of the most significant contributions of this research.
Riccati Equation Feasibility Problem (REFP).

Theorem 3.1. If there exists # € R?, ¢ > 0, and P € R™™" such that

~ T - ~ T ~ T . ~ T -1 .r -
0=A, (0)P+PA,(0)+(B, ()P —C,(0)) (D,(0)+ D, (8)) (B (0)P—C,(0))+el,
(3.2)
P>0, D,0)+D.(6) >0, (3.3)

where 0 corresponds to the free parameters of the matrices providing a state-space
representation of the compatible multiplier and ;17, B.,, (3’7, D7 are functions of the
plant and multiplier matrices, then the negative feedback interconnection of G(s)
and A is asymptotically stable.

The dimension ¢ is determined by the multiplier and r is determined by both the

multiplier and the nominal plant size.

-~ - —
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If we are considering control design then @ corresponds to the free parameters of
both multiplier and controller matrices. The controller matrices essentially provide
extra degrees of freedom to satisfy the Riccati equation constraint (3.2). Note that
A,(8), B,(8), C,(), and D,(8) are generally nonlinear functions of §. Hence it is
not possible to convert the REFP to an LMI feasibility problem.

We approach the development of a solution technique by defining the following

artificial cost function
T 2 - AT v -1 1
J(6,e,P) = ab" 0+ ae’ +rqtr [D,(0) + D, (0)] +rptr P7" +7 - (3.4)

where a, 74, Tp, and r, are positive scalars.
To characterize the extremals, we define the Lagrangian

[’(0, € Pa Q) = J(07 €, P) + tr QW(e: ¢ P)7 (35)

where W (6, ¢, P) denotes the right hand side of (3.2) and Q is the symmetric Lagrange
multiplier. Note that the constraints (3.3) are absorbed into J as barriers. The

necessary conditions are given by Fletcher (1987)

oL oL
0= % = (B,T(O)P - C,(60) (Dy(0) +D,"(6) (BT (0)P - C(8))
+A,7(0)P + PA,(6) + eI, (3.7)
0=2 — Ro+QFr —ry P+ Dy, (38)

where
~ ~ ~ ~ = -1 r=~ ~
F,=A,-B,[Dy+DI]" [B,P-C,].
Although (3.6)-(3.8) characterizes extremals, we have not yet developed a reliable
method to compute these extremals. Note that standard interior point descent meth-
ods (e.g., steepest descent, conjugate gradient, or quasi-Newton methods) cannot be
directly applied due to the nature of the constraints. For example, suppose we at-
tempt to initialize one of these methods with a multiplier (in the class of multipliers

for the given uncertainty set) represented by 6y and also choose an initial € denoted

- .
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by €. Then, if there exists a positive-definite solution Py to (3.2), the REFP is
solved and there is no need for further computations. However, suppose there is no
positive definite solution P to (3.2). Then, (6, €9, Ps) cannot be used to initialize
an interior point descent method to find a solution to the optimization problem since
this class of methods requires an initial feasible interior point. What is needed is
a numerical technique that is able to find a solution by starting with a nonfeasible
point (6o, €9, Py). This is accomplished in the next section using a probability-one

homotopy algorithm.

3.3 Probability-One Homotopy Algorithms for Robust Controller
Synthesis

Consider a function F : RY x R — RY that is C2. Given y; € R, it is desired to
find z € R" such that

0= F(z,vy). (3.9

This is a standard zero finding problem. In the context of the robustness analysis

results of the previous section

z=(0,¢), N=gq+1, (3.10)

oL oc
F(:Eyf)I) = (—6—0—’ _a'g>7

and vy corresponds to some desired lower bound on the multivariable stability mar-

(3.11)

gin. Note that 0 = % and 0 = %%’ are implicitly satisfied by choosing P as the
(maximal) solution of the Riccati equation (3.7) (or (3.2)) and @ as the solution of
the Lyapunov equation (3.8).

Let zo = [y, €o) represent a feasible multiplier, a stabilizing compensator and
a positive e. Furthermore let 7y be chosen small enough such that there exists a
positive-definite solution F to (3.2). (It is assumed that 4y < <y; such that the
robustness problem is not trivial.)

We let
YA) =1 = A+ Ay (3.12)
and define the probability-one homotopy map p: [0,1) x RY = R" by

‘p(/\,m) = AF(z,7(A)) + (1 — A)(z — zo). (3.13)
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Obviously, 0 = p has the unique solution zy and p = F(x,7s). These are necessary
conditions for the homotopy map. In the context of the robustness problem, this
homotopy map has the desirable property that it can be initialized with any feasi-
ble multiplier. In addition, for any A € [0,1) the corresponding point on the zero
curve (z, ) corresponds to a controller and multiplier that guarantees the level of
robustness corresponding to () since the Riccati equation (3.2) (or (3.7)) with the
constraints (3.3) are satisfied with v = (). Hence, each point on the zero curve
(0 = p(\, z), A € [0,1)), is physically meaningful even though F(z,y())) # 0 for
0<A<l

3.3.1 Probability-One Homotopy Algorithm
Complete details of the numerical algorithm are in Watson et al. (1987b). A
sketch is as follows.

1. Set A 20, z = z,.
2. Evaluate the homotopy map p and the Jacobian of the homotopy map Dp.

3. Predict the next point Z() on the homotopy zero curve using, e.g., a Hermite

cubic interpolant.
4. For k =0,1,2,... until convergence do
704 = z® — [Dp(ZM)]'p(29),

where [Dp(Z)]' is the Moore-Penrose pseudo inverse of Dp(Z). Let (z1,\;) =
limk_,ooZ k.

5. If \; < 1, then set z = z;, A = Ay, and go to to step (2).

6. If A; > 1, compute the solution z at A = 1 using, e.g., inverse linear interpola-
tion (Watson et al. 1987b).

3.3.2 Robust Control Synthesis Using the Popov Multiplier for a Bench-
mark Problem
To illustrate robust control synthesis with the probability-one homotopy algo-

rithm, we consider the two-mass/spring benchmark system shown in Figure 3.2 with

- - —
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uncertain stiffness k. A control force acts on the body 1 and the position of body 2
is measured, resulting in a noncollocated control problem. This benchmark problem
is discussed in detail in Wei and Bernstein (1992).

X) X5

—_ =
u— m NN m —w
O O O 0O |

Figure 3.2: Two Mass/Spring System

We desire to design a constant gain linear feedback compensator of the form

i’c(t) = Acxc(t)+ch(t)a (314)
u(t) = - cmc(t)a (3.15)

such that the closed-loop system is stable for 0.5 < k < 2.0 and for a unit impulse
disturbance at ¢ = 0, the performance variable 2 has a settling time of about 15 s
for the nominal system (with k = kpom = 1).

The controller transfer function obtained by the probability-one homotopy algo-
rithm and the Popov multiplier H? 4+ N, is given by

2819 (s + 0.2079)[(s — 0.0978)* + 0.8063%]
[(5 + 4.004)® + 1.8294%][(s + 3.4747) + 9.97452]

This controller is guaranteed by the theory to be robust for the range 0.5 < k < 2.0

H(s) =

(3.16)

and this was also verified by a direct search. The settling time for the system was
chosen to be the time required for the displacement of mass 2 to reach and stay
within the interval [-0.1m, 0.1m]. The controller is seen to satisfy the settling time
objective when connected to the nominal model corresponding to £k = 1 N/m, as
can be seen from the impulse response of the closed-loop system in Figure 3.3. It
can also be seen that the settling time objective is satisfied for the entire family of
plants (0.5 < k < 2.0), which, though not a design requirement, is a very desirable
characteristic of the controller.

- —
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Figure 3.3: Impulse Response of Closed-Loop System
3.4 Conclusion

It has been demonstrated that fixed-architecture, robust control design using
general fixed-structure multipliers can be formulated as a Riccati equation feasibil-
ity problem, a nonlinear, algebraic feasibility problem. Probability-one homotopy
algorithms have been proposed to solve this feasibility problem. These algorithms
differ from previously developed continuation algorithms, developed exclusively for
the case of the Popov multiplier, in that they can be initialized with any admis-
sible multiplier and stabilizing compensator. Like other probability-one homotopy
algorithms they also tend to be better conditioned than the alternative continuation
algorithms. The results have been specialized to the special case of Popov multipliers
and the use of the algorithm has been illustrated by implementing it for the synthesis
of fixed-structure controllers with robust H, performance for a standard benchmark

problem.



CHAPTER 4

SYNTHESIS OF FIXED-ARCHITECTURE, ROBUST H, AND H,,
CONTROLLERS

4.1 Introduction

This chapter considers the design of robust controllers using the state space Popov
analysis criterion which is based on the Popov stability multiplier W(s) = H? + Ns.
This is a special case of mixed structured singular value synthesis (Haddad et al.
1994c, How et al. 1993). Algorithms for both robust H, and H,, performance are
described and compared. The formulations which closely follow those presented in
Collins et al. (1996c, 1997a) require the minimization of a cost functional subject
to a Riccati equation constraint. These formulations have several advantages. First,
compensator order and architecture can be specified a priori. In addition, both the
controller and multiplier parameters can be optimized simultaneously which avoids
M-K (i.e., multiplier-controller) iteration, potentially leading to better performing
robust controllers. For robust H, performance the cost function that is minimized
is an upper bound on the H, performance over the uncertainty set. For H,, perfor-
mance, an artificial cost function is used.

Because of positive definite constraints on the Riccati equation solution, stan-
dard descent techniques cannot be used to solve the resulting optimization problem.
Hence, probability-one homotopy algorithms have been formulated (Collins et al.
1996¢, 1997a). These algorithms have desirable properties when applied to con-
troller design. First, they can be initialized with any feasible multiplier and stabiliz-
ing controller. Also, each controller computed as the homotopy curve is traversed is
physically meaningful. In particular, for the robust H, performance each controller
along the homotopy path guarantees a specified degree of robust stability while for

- — —
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the robust H,, performance problem each controller guarantees a specified degree of
both robust stability and robust performance. Collins et al. (1996¢c, 1997a) describe
implementation of the algorithm for H, performance. A major contribution described
in this chapter is the implementation of the algorithm for robust H,, performance

and a comparison with the algorithm for robust H, performance.

4.2 Riccati Equation Approaches to Robust Controller Synthesis Using
the Popov Multiplier

Consider the uncertainty feedback system shown in Fig. 4.1, where G(s) has the
n'® order, stabilizable and detectable realization

 A|B, D, B]

Gls) ~ Glo o0 o | (1)
E;l0 0 0
| c|0 Dy 0

K (s) has a realization of order n, < n given by

K(s) ~ [—_A—é-*—ﬁi] , (4.2)

and A, € U where for M; and M, in D™*™ with My — M; > 0, U is the real

parametric uncertainty set
UE{A, € R™*™0: My < Ay < My}, (4.3)

Let
Z=[z BT (4.4)

and let @ be a vector representation of the controller state space matrices, for example
T
6= [ vecT(A.) vecT(B.) vecT(C.,) ] . (4.5)

Then Fig. 4.1 is equivalent to Fig. 4.2 where

Gis,K)~| Gy |0 0 (4.6)
0
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Ay
Uy v,
w G(s) z
u y
K(s)
Figure 4.1: Uncertain Feedback System
where
. A -BC,
() = , (4.7)
B.C A,
~ By ~ D,
By = , D@) = , 4.8
=1 4 6) B.D, (4.8)
- . E, 0
Co=|Cy 0], E@)= . 4.9
=[G 0], BO)=| EZCC] (4.9)

It is desired to determine K(s) or equivalently @ such that for all A, € U, the
system of Fig. 4.2 is asymptotically stable and either || F,(G, A,)|l, or | Fu(G, Au)|lo
satisfies some prespecified bounds.
Define
R(6) £ ET(0)E(6), V(8) £ D(6)DV(9). (4.10)

The next theorem formulates a synthesis problem for robust H; performance in terms
of the Popov multiplier W(s) = H? + Ns.

Theorem 4.1. Suppose G(s, K) is asymptotically stable. If there exist §, H €
pmoxme - N € DmoX™o - P > (), and € > 0 such that

Y = [ 2H?(M, — My)™' + NCy By + BTCTN ] >0 (4.11)
and

0 = (/1(0) - B()Mléo)TP + P(A(H) - B()Mléo) +
[BTP — H?Cy — NCo(A(B) — BoMyCo)[T - Y-
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[BIP — H?Cy — NCy(A(9) — BoM;Cy)] +
 €R(9), (4.12)

then the uncertain system of Fig. 4.2 is asymptotically stable for each A, € Y. In
addition,

max || F.(G, All, £ J(e,6,H,N,P) (4.13)
aeld
& ulP+ G (M, ~ M)NCA] (0)

Proof See Haddad et al. (1994c). O

Ay

Uy Yu

G(SaK) ——

Z

w

Figure 4.2: Closed-Loop Representation of Uncertain System

To consider H, performance, a fictitious complex uncertainty block A, is inserted
into Fig. 4.2 (Doyle et al. 1982b, Packard and Doyle 1993) as shown in Fig. 4.3. It is
assumed that 0,,,-(4p) < 7. For ease of presentation assume that dim(z) = dim(w)
= g, such that A, € C??. Define

My = block-diag{ My, —1,}, My £ block-diag{M,,vI,} (4.14)
BO)£[ B, D) ], C()2 ?" . (4.15)
E(6)

The next theorem formulates a synthesis problem for robust H,, performance in
terms of the Popov multiplier W (s) = H2 + Ns.

Theorem 4.2. Suppose C;‘(s, K) is asymptotically stable. If there exist §, H =
block-diag{H,, Hy} where H, € D™*™ and H, € RYY satisfies HyA, =
A H,, N = block-diag{N,,0,} where N, € D™*™ P > 0 and € > 0 such that

Y = [ 2H*(0t, - ’1,)" + NCB + BTN | > 0 (4.16)
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and

—1

0 = (A(6) - BM,C)TP + P(A(9) - BM,C) +

[BT"P - H*C — NC(A(6) — BM,C)]T -

[BTP — H*C — NC(A(6) — BM,C)] + I, (4.17)

then the uncertain system of Fig. 4.3 is asymptotically stable for each A, € &. In
addition,

~ 1
max [|F,(G, Ayl < —- 4.18
ma [1Fu(G, Al < - (4.18)

Proof. Follows from results in Haddad et al. (1994c) and Haddad et al. (1995b,
1996) and a straight forward variant of the main loop theorem (Packard and Doyle,

1993). O
AU 0
0 Ap
u — y
u G(S’K) u
w Z

Figure 4.3: Closed-Loop Uncertain System with ‘Performance Block’

4.3 Algorithms for Robust Controller Synthesis

Theorems 4.1 and 4.2 both pose robust controller synthesis as a Riccati Equation
Feasibility Problem (REFP) (Collins et al. 1996c, 1997a). As discussed in Collins
et al. (1996¢, 1997a) an approach to solving the REFP of either Theorem 4.1 or
Theorem 4.2 can be based on solving an optimization problem

min J(e,0, H, N, P) subject to (4.12) or (4.17) (4.19)

¢,0,H,N,P

where J(-) denotes an appropriate cost functional.
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For control design for robust H; performance J(-) is given by (4.13). For robust
H, performance .J(-) can be chosen to minimize the artificial cost function

J(e,0,H. N, P) = trP. (4.20)
To characterize the extremals define the Lagrangian
L(e,0,H,N,P,Q) = J(¢,0, H,N, P) + trQW (¢,6, H, N, P) (4.21)

where W (-) denotes the right hand side of (4.12) or (4.17). The necessary conditions
for a solution to (4.19) are given by

oc oc oc oLC

025, 0:%, O:'é—il—, 0=6—N, (422)
oc oc
0= 20" 0= 25 (4.23)

In this chapter probability-one homotopy algorithms based on the Popov mul-
tiplier have been developed and implemented for both robust H, and robust H,,
controllers. The controllers and control algorithms are then compared with each
other and with that produced using complex singular value synthesis.

4.4 Numerical Example

To illustrate robust control synthesis with the probability-one homotopy algo-
rithm, we consider the two-mass/spring benchmark system shown in Figure 3.2 with
uncertain stiffness k. A control force acts on the body 1 and the position of body 2
is measured, resulting in a noncollocated control problem. This benchmark problem
is discussed in detail in Wei and Bernstein (1992).

We desire to design a constant gain linear feedback compensator K (s) with real-
ization (4.2) such that the closed-loop system is stable for 0.5 < k < 2.0 and for a
unit impulse disturbance at ¢ = 0, the performance variable z has a settling time of
about 15 s for the nominal system (with k = kyom = 1).

Observations
All three controllers are guaranteed by the theory to be robust for the range 0.5 <

- — ——"
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Impulse Response of Closed-Loop fork = 0.5, 1, 2
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Figure 4.4: Impulse Response - Robust H, Controller

k < 2.0 and this was also verified by a direct search. It is seen that the upper
bound on the worst case cost for both the robust H, and robust H,, controllers are
fairly ‘tight’, whereas that for complex p synthesis is clearly very conservative. The
robust H, controller is stable for 0.35 < k < 2.39; the robust H,, controller is stable
for 0.4 < k < 2.45 and the controller obtained by complex p synthesis is stable for
0.32 < k < 6.7. Clearly the controllers obtained using the Popov multiplier approach
are less conservative than that obtained by complex u synthesis.

The settling time for the system was chosen to be the time required for the
displacement of mass 2 to reach and stay within the interval [-0.1m, 0.1m]. All
three controllers are seen to satisfy the settling time objectives when connected to
the nominal model corresponding to ¥ = 1 N/m. It is seen that the settling time
objective is satisfied for the entire family of plants (0.5 < k < 2.0), which, though not
a design requirement, is a very desirable characteristic of the controllers. It is seen
that the robust H; and robust H, controllers obtained using the Popov multiplier
approach yield similar time responses. It is seen that nearly similar control effort is
required by both the robust H; and the robust Hy, controllers and it is significantly
less than that required by the complex u controller. It is also seen from F ig. 4.5
that both the robust H, and the robust H,, controllers have bandwidths which are
significantly smaller than the bandwidth of the complex y controller.
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It is observed that the algorithm for robust H,, performance is much more com-
putationally intensive than that for robust H, performance. This is because the
expressions for the gradient and Hessian for H,, design are far more complex than
those for H, design.

4.5 Conclusions

The Popov Multiplier has been used to develop probability-one homotopy algo-
rithms for the design of robust controllers with guaranteed H, or H,, performance.
The formulation closely follows that presented in Collins et al. (1996c, 1997a) and
extends it to the case of robust controllers with H,, performance. Though the for-
mulation for both the robust H; and the robust H,, problems are very similar, the
gradient and the Hessian expressions for the H,, formulation are more complex. A
numerical benchmark example is presented for both the robust H, and H, con-
trollers. Both controllers are found to have smaller bandwidth, smaller control au-
thority and to be significantly less conservative than controllers obtained by complex
p synthesis. It is seen that the algorithms for the robust H,, controllers are more
computationally intensive than algorithms for robust H, controllers, as is expected.

Certainly if the uncertainty is mixed, and the performance requirements are in

terms of H, cost, it is preferable to use the multiplier based algorithms with guaran-
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teed H,, performance (as described in this chapter) than complex p synthesis. The
fact that the robust H, and the robust H,, algorithms produce controllers with simi-
lar characteristics, suggests that when the performance specifications are not directly
in terms of either H, or H,, cost, one may use either of the two algorithms. In this
case, due to the significant difference in computational complexity, it is advantageous
to use the algorithm for H, performance. '



CHAPTER 5

ROBUST CONTROLLER SYNTHESIS VIA NONLINEAR MATRIX
INEQUALITIES

5.1 Introduction

Mixed structured singular value (MSSV) theory (Fan et al. 1991) was devel-
oped to nonconservatively analyze the robust stability and performance of systems
with both real parametric and complex uncertainty. The LMI formulations of MSSV
theory (Balakrishnan et al. 1994, Ly et al. 1994) led to the recognition that robust
control design can be approached via solving a (nonconvex) “bilinear matrix inequal-
ity” (BMI) (Goh et al. 1994a, Safonov et al. 1994). This approach, like those based
on a Riccati equation constraint (Collins et al. 1997a, Haddad and Bernstein 1991),
allows the design of fixed-architecture controllers and can be implemented without
using M-K iteration. To obtain a reasonably sized BMI, the multiplier set must be
restricted to lie in the span of a stable basis (Goh et al. 1994a). However, the choice
of this basis is unclear and can potentially introduce a high degree of conservatism.
If the less conservative LMI formulation, requiring the use of unstable multipliers,
is used, to ensure closed-loop stability, the resultant BMI must be of very high di-
mension due to the introduction of a Lyapunov inequality of the dimension of the
closed-loop system (Safonov et al. 1994).

In this chapter the LMI approach to MSSV analysis is used to develop an approach
to robust controller synthesis that is based on the stable factors of the multipliers
and does not require the multipliers to be restricted to a basis. It is shown that this
approach requires the solution of nonlinear matrix inequalities (NMI’s). A continu-
ation algorithm is presented for the solution of NMI’s. This algorithm provides an
alternative to the approaches proposed in Goh et. al. (1994c) to solve BMIs. The

- - ——
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G(s) g

Figure 5.1: Standard Uncertainty Feedback Configuration

primary computational burden of the continuation algorithm is the solution of a se-
ries of LMIs. The Popov multiplier is used to formulate a NMI to solve a benchmark
problem and the algorithm is used to synthesize a controller that meets the design
constraints.

5.2 Multiplier Methods in Robustness Analysis

In this section we review the framework for mixed uncertainty robustness analysis
with fixed-structure multipliers. The exposition generally follows that presented
in Haddad et al. (1995b, 1996), Ly et al. (1994), Safonov and Chiang (1993),
and Balakrishnan et al. (1994). We begin by considering the standard uncertainty
feedback configuration of Figure 5.1, where G(s) € C™™ is asymptotically stable

A|B
and G(s) ~ [—C%] It is assumed that the uncertainty A € C™*™ belongs to the

set

p
A, 2 {A = block-diag(Ay, ..., Ap) : A; € Ty, Omax(Ai) < v,i=1,..,p, ki =m},
i=1

(5.1)
where Z; C CF** denotes the internal structure of the uncertainty block A; and
v > 0.

We need to find sufficient conditions such that the negative feedback intercon-
nection of G(s) and A is asymptotically stable (or, equivalently, det(I + G(jw)A) #
0, w € R) for all A € A,. The sufficient conditions for robust stability (and perfor-
mance) have been formulated as nonlinear matrix inequalities (NMIs). Continuation
type algorithms have then been developed to solve these NMIs. Below, we briefly
present some of the most significant contributions of this research.
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Nonlinear Matrix Inequality for Robust Controller Synthesis
(NMIRCS) .

Theorem 5.1. If there exists# € R?, ¢ > 0,and P € R™™" > 0 such that fl,—}-]jf >

0 and
A (0P + PA,9) —PB,(6) +C, (6)

—B, (O)P+C(0) (Dy(6) - I) + (D (6) — eI)T

where 6 corresponds to the free parameters of the matrices providing a state-space

>0 (5.2)

representation of the compatible multiplier and fi,,, B,,, C~'7, l~)., are functions of the
plant and multiplier matrices, then the negative feedback interconnection of G(s)
and A is asymptotically stable.

The dimension ¢ is determined by the multiplier and r is determined by both the
multiplier and the nominal plant size. If we are considering control design then
corresponds to the free parameters of both multiplier and controller matrices. The
controller matrices essentially provide extra degrees of freedom to satisfy the NMI
constraint (5.2).

5.3 A Continuation Algorithm for NMI Feasibility Problems
Let G: R™ x R — RP*? be a nonlinear function and define
Fy(z) 2 G(2,7)ly=y- (5.3)
Given vy, we desire to find = such that
F, (z) <0. (5.4)
Let v:[0,1) = R be the function
7(A) = (1= Ay + Ay (5.5)

It is assumed that given a value 7y, there exists an easily computed point z, such
that
F,(z9) < 0. (5.6)
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Define H : R™ x [0,1) — RP*P by
H(z, ) £ G(z,v(N)). | (5.7)
Consider the NMI
H(z,\) <0 (5.8)
and note fhat
H(z,0) = Fy(a) (5.9)
and hence at A = 0, (5.8) has a solution z = x, which is easily found. Also,
H(z,1) = F, (z), (5.10)

and hence at A = 1, (5.8) becomes the desired NMI (5.4).
To enable path following, instead of solving the NMI feasibility problem (5.4), we
solve the following NMI eigenvalue problem

Min Amax (Fy, (7)) (6.11) -

where Amax denotes the maximum eigenvalue of F,, ; (z). Clearly there exists a solution
z € R to the NMI feasibility problem (5.4) if and only if

min Amax (F, (2)) < 0. (5.12)

5.3.1 Continuation Algorithm
1. Set A0, v < 70, 2@ « ¢, Ry > 0, R, > 0, AX > 0.

2. For k = 0,1,2,... until convergence compute z**!) by solving the LMI opti-
mization problem

IID A (A(dz™, )))

subject to the LMI
A(dz® X)) <0

and the move limit constraint

o] < .
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where

A(dz™, 2) = H(z®, ) +Z dz "

I
denotes the linearization of H(x, \) about x(’“). x(’”“) is defined by
g*D) = g ®) 4 gg®),
Let £(A) = limy_,o z%).
3. If A =1, stop; z(1) is the solution.

4. Compute the direction vector z(A) by solving the LMI optimization problem
min Amax (B(2(A), )
subject to
B(z(A),A) <0,  [lz(W)| < Ry,

where

OH

B(z(\),7) = H(z()) ,\)+Z Y A/\+—(9—/\—AA

is an approximation of H(z(\) + z(\ )A)\, A+ A)) and A is the (fixed) incre-

ment in ).

5. Predict z(A + A)) using
0 — 2()) + 2(N) AN

6. Set v+ y(A+ AX), A<= A+ AX and go to Step (2).

Observe that Step 2 is always possible because H(z®,)) < 0, and that Step 4
always has a solution for AX sufficiently small. If Step 4 has no solution, decrease
AX and/or increase R;. Both, steps (2) and (4), are LMIs which can be solved
efficiently using standard techniques (Nemirovskii and Gahinet 1994, Boyd and El
Ghaoui 1993) and tools for the solution of LMIs are readily available (e.g. Gahinet et
al. 1995). Constraining the magnitudes of ‘dz’ and ‘2’ (via R; and Ry) in steps (2)
and (4), to be small, allows the LMIs at each iteration, to be a good approximation
to their corresponding NMI's. In step (2) instead of ‘letting k approach infinity’,
in practice, it is found to be sufficient to stop the iteration when the maximum
eigenvalue of the corresponding NMI is negative.

- ——"
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Figure 5.2: Impulse Response

5.3.2 Robust Control Synthesis Using the Popov Multiplier for a Bench-
mark Problem

To demonstrate the use of the continuation algorithm discussed in the previous
section, we consider the two-mass/spring benchmark system shown in Fig. 3.2 with
uncertain stiffness k. A control force acts on the body 1 and the position of body 2
is measured, resulting in a noncollocated control problem. This benchmark problem
is discussed in detail in Wei and Bernstein (1992).

We desire to design a constant gain linear feedback fixed-structure compensator
K(s), such that the closed-loop system is stable for 0.5 < k < 2.0 and for a unit
impulse disturbance at ¢ = 0, the performance variable 2z has a settling time of about
15 s for the nominal system (with k& = kyom = 1).

Observations

The controller is guaranteed by the theory to be robust for the range 0.5 < k < 2.0
and this was also verified by a direct search. The settling time for the system was
chosen to be the time required for the displacement of mass 2 to reach and stay
within the interval [-0.1m, 0.1m]. The controller is seen to satisfy the settling time
objectives when connected to the nominal model corresponding to k = 1 N/m, as
can be seen from the impulse response of the closed-loop system in Fig. 5.2. It

- - ——
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can also be seen that the settling time objective is satisfied for the entire family of
plants (0.5 < k < 2.0), which, though not a design requirement, is a very desirable
characteristic of the controller.

5.4 Conclusions

The LMI approach to MSSV analysis has been used to develop an approach to
robust controller synthesis that is based on stable factors of the multipliers and does
not require the multipliers to be restricted to a stable basis. This approach, in general
leads to nonlinear matrix inequalities (NMI’s), and in special cases to bilinear matrix
inequalities (BMIs). An effective continuation algorithm has been developed to solve
NMTI’s (and hence BMIs). The primary computational burden of this algorithm is
the solution of a series of linear matrix inequalities (LMIs). The use of this algorithm

has been demonstrated by designing a robust controller for a benchmark problem.



CHAPTER 6

FIXED-STRUCTURE NONLINEAR OPTIMAL OUTPUT
FEEDBACK STABILIZATION FOR NONLINEAR SYSTEMS

6.1 Introduction

Although the theory for designing linear output feedback controllers is quite ma-
ture, nonlinear output feedback controller synthesis remains relatively undeveloped.
In numerous real world applications system nonlinearities such as saturation, relay,
deadzone, quantization, geometric, and material nonlinearities require nonlinear out-
put feedback controllers. Furthermore, for linear plants with parametric uncertainty
and nonquadratic performance criteria, nonlinear controllers exist that generate su-
perior performance over the best linear controller (Haddad et al. 1998). In this
chapter we develop a fixed-structure controller synthesis framework for nonlinear
control. The motivation for fixed-structure nonlinear control theory is to address con-
troller synthesis within a class of candidate nonlinear feedback controller structures.
Specifically, control Lyapunov functions are used to provide a controller synthesis
framework by assuring global or regional asymptotic stability for an a priori fixed
class of nonlinear feedback controllers. A specific controller within this class can now
be chosen to optimize a given performance functional. Thus, this provides a con-
structive framework where Lyapunov theory is used to guarantee global or regional
asymptotic stability over a class of nonlinear feedback controllers while optimization
is perforrhed over the free controller gains so as to minimize a specific performance
functional. ‘

It is important to note that the proposed nonlinear controller synthesis framework
is quite different from the classical optimal nonlinear control approach predicated on

the Maximum Principle. Specifically, the Maximum Principle does not guarantee

- - —
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asymptotic stability via Lyapunov functions and does not necessarily yield feedback
controllers. In contrast, the proposed approach provides a constructive design control
Lyvapunov function framework for full-state and output feedback control of nonlin-
ear systems using a two-stage optimization framework that guarantees closed-loop
stability and optimality with respect to a designer specified performance criterion.

The first stage of this approach is concerned with the synthesis of fixed-structure,
state feedback and output feedback, nonlinear control laws and corresponding fixed-
structure control Lyapunov functions that increase the domain of attraction of a
given nonlinear system about an equilibrium point of the system. The reason for ex-
plicitly considering increasing the domain of attraction, as opposed to ensuring global
asymptotic stability, is that in practice it may be sufficient to have a controller with
an adequately large domain of attraction. Furthermore, for some nonlinear systems
global asymptotic stability may not be achievable via nonlinear output feedback (or
even state feedback). However, it should be recognized, as will be subsequently
demonstrated, that this approach does have the ability to synthesize globally stabi-
lizing control laws.

The second stage of this approach is concerned with finding a fixed-structure
nonlinear control law that optimizes an a priori chosen performance functional. It is
assumed that the first stage, described above, results in a set of (regionally) stabiliz-
ing control laws. This second stage then finds a member of this set which optimizes
a particular cost function. It is important to note that our nonlinear controllers are
not predicated on an inverse optimal control problem (Moylan and Anderson 1973,
Freeman and Kokotovic 1996, Sepulchre et al. 1997, Haddad et al. 1998) wherein,
in order to avoid the complexity in solving the Hamilton-Jacobi-Bellman equation,
a derived cost functional as opposed to a given cost functional is minimized. Even
though inverse optimal controllers may possess indirect robustness guarantees to
multiplicative input uncertainty, the performance of the resulting controllers can be
arbitrarily poor when compared to the optimal performance as measured by a de-
signer specified cost functional. Furthermore, since such controllers are predicated
on Hamilton-Jacobi-Bellman theory they are limited to full-state feedback control.
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6.2 Fixed-Structure Controller Design for Nonlinear Systems

In this section we develop a two-step design approach for synthesizing fixed-
structure, state and output feedback nonlinear optimal control laws for nonlinear
affine systems. First, we focus on the development of stabilizing control laws and
then extend our framework to determine stabilizing controllers that optimize a given

performance functional.

6.2.1 Design of Stabilizing Nonlinear Control Laws

In this section we consider nonlinear affine systems of the form

&) = f(z(t) +g(z(t)u(t), 2(0)=z0, ¢t >0, (6.1)
y(t) = h(z(t), - (6.2)

wherez € R", ue R™, ye R, f: R" >R, g: R* = R™™ and h: R" = R
We assume that f(-),g(-), and h(-) are smooth (C' mappings) and f(-) has at least
one equilibrium so that £(0) = 0 and A(0) = 0. In this chapter we focus our attention
on systems (6.1) where f(-), g(-) and h(-) are polynomial functions. If f(-), g(-) and
h(-) are nonpolynomial, then it follows from the Stone-Weierstrass theorem that they
may be approximated by polynomial functions using a Taylor series approximation.
In this case, increasing the domain of attraction of the approximated system would
increase the domain of attraction of the original system. Hence, this represents an
important and fairly general class of nonlinear systems.

To develop a nonlinear controller synthesis framework, we fix the structure of the
control Lyapunov function candidate V(z) and the control input u(t) = ¢(z(t)) to

have the general polynomial form given by

V(z) =27 Pz + i(xTP,-m)i, (6.3)

=2

where P, € P™", P, e N"*" for all i € {2,...,q}, and

u= ¢(y) = Z kiliz“'izyilygz et ylil’ ' (6’4)

iivi2v~"1il
where k;,;,..;, € R for all 414, - - -4,. Now, let 8 represent the vector of free parameters
corresponding to the sign definite matrices P; and the controller parameters ki g,

- ——




45
that is,
0 £ [vec(Pi), ki]iz--'ig]’ (65)

where ‘vec’ denotes the column stacking operator. In this case, the total derivative
of the control Lyapunov function along the trajectories of the closed-loop system is
given by

V(z) = -N(8,z) = —2TB(@)z — > C)

15482,eeesin

81,02, , pin g o
iyigeiy, L1253 Ty, ittt ti, # 2,

(6.6)
where B(f) € P™*" and C(6) € R for all 4,49+ -1,.
Next, we use the elements of § as degrees of freedom to find the controller and

1199 n

control Lyapunov function which maximizes the domain of attraction for the closed-
loop system.

Let Z, denote the set of even nonnegative integers including zero and define the
sets €’} and d7 as

€ = {(i1,42,+,in) 14 € Lo, j € {1,...,n}, i # 2}, (6.7)
j=1
8% £ {(ir,iz,+yin) 1 5 €{1,2,...,n}, 4 € Lo, 345 # 2} (6.8)
Jj=1 v
. Define
E0)2 3 (C(0)i,.5.)% (ir,iz, -+, in) € 67, (6.9)
i19-8n

and denote P; as P;(6).
Numerical Algorithm for Design of Stabilizing Controller.

For € = €y to 0 in steps of Ae
ming J;(8) = E(0) — 7o log(det(P,(8))) — 7o log(det(B(8) + €I))
subject to
C0)i,ip, >0, (31,02, +,in) €€

end.

For r =y to r¢, where r; is a small constant close to zero, in steps of Ar

- - ——
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ming J;(8) £ E(0) — rlog(det(P,)) — rlog(det(B))

subject to

C(6)
end.

iyigin = 0, (217 12, Zn) €€y

The constant ¢, is chosen large such that the initial feasible set is large and an
initial feasible point @ is easy to find. As r — 0, the solution # approaches the
solution of the actual Optimization Problem.

6.2.2 Design of Optimal Nonlinear Control Lafvs

Using the approach outlined in the previous subsection, we can design a stabilizing
nonlinear controller for a given nonlinear system. This framework can be extended
to an optimization problem in which it is desired to minimize a given performance

criterion of the form
J(u, 7o) = /0 L(z(t), u(t))dt, (6.10)

where L : R" x R™ — R is not necessarily quadratic. Specifically, given an initial
condition xo and a stabilizing controller, the closed-loop system may be numerically
integrated to obtain the trajectories of x(t) and u(t), ¢ > 0, and hence J,(u, o) may
be evaluated. For asymptotically stable systems the contribution to the integral
(6.10) becomes negligible after some finite time. Hence, in practice, it is sufficient to
integrate over a finite time interval.

To eliminate the dependence of the synthesized controller on the initial condition
To, the controller is synthesized to optimize the average of several cost functions
corresponding to a number of evenly distributed initial conditions in a specified
region of state space. The performance functional (6.10) is therefore replaced by

o) = 3 s Ty, 0,), (6.11)

where p : R" — R, is some function of the distance of zy; from the origin. This
vields a stabilizing controller which is optimal, for the chosen structure of the control
law, over a specified region of state space in an average sense.

It is important to restrict the space over which the optimization is carried out
to the set of stabilizing controllers since the cost function is defined only in this set.

- - ——
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This results in the following optimization problem:
moin J(u) £ WpJavg(©) + wsJs(u), (6.12)
subject to the constraints

c(6) >0, (iiyig,. -+ ,0n) € €, (6.13)

il’i2“'in
where J;(0) is the cost for the stability part discussed in the previous subsection, and
wp and w, are constants for the performance and stability part of the cost function,

respectively. Since J;(8) effectively acts as a barrier function, w, should be chosen

to be much smaller than Wp.

6.3 Illustrative Numerical Examples

In this section we present several numerical examples to demonstrate the efficacy
of the proposed approach. The first example illustrates the application of the design
approach for the synthesis of full-state feedback stabilizing nonlinear controllers. The
next example discusses the synthesis of output feedback stabilizing nonlinear con-
trollers. The last example presents the design of optimal, output feedback nonlinear
control laws. An optimization problem must be solved in the performance phase of
the design, and at each step of the continuation algorithm, in the stability phase of
the design. All optimization problems are solved using a constrained BFGS algo-
rithm (Fletcher 1987) in the Matlab Optimization Toolbox (Grace 1992).

Example 1 (Full-State Feedback). Consider the open-loop unstable nonlinear

system

i = -1 + 1927, (6.14)
Ty = ITy+u. (6.15)

Note that for this system the domain of attraction of the open-loop system consists
of a single point, namely, the origin. We assume that all states are measurable and
choose a quadratic control Lyapunov function V(z) = 2T Pz, and a controller of the
form

u= klo«’El+k01$2+k2of€?+k11$1$2+k02$§+k30$?+k2117%$2 + k122123 + ko33 (6.16)

- - —"
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Using a variety of initial conditions and constraining all the optimization variables

between -10 and 10, we arrive at the following solution:
V(z) = 10x? + 1022,

u = —10zy — 23 — 222z, — 1.6323.

It can be easily verified that all constraints are satisfied. In addition, for this par-
ticular example, E = 0, so that E achieves its minimum value. Hence, in this case
the domain of attraction is R", i.e., the controller obtained is globally asymptotically
stable. This shows that if appropriate forms are chosen for the control Lyapunov
function and the controller, global asymptotic stability may be obtained.

Example 2 (Static Output Feedback). It is now assumed that in Example 1
only the state z, is measurable. A quadratic control Lyapunov function V(z) = 7 Pz
is chosen as in Example 1, and the structure

U= k()lIL‘g + k’()za?% + k03$g, (617)

is chosen for the controller.
Using a variety of initial conditions and constraining the optimization variables

between -5 and 5, we arrive at the following solution:
V() = 0.353z% + 522,

u = —5xy — 0.09z3.

The minimum value of E achieved is 0.5 and ko; achieves its lower bound, i.e.,
ko; = —5. The fact that the minimum value of E is not close to zero indicates that
global stability has not been achieved in this case. However, simulations indicate that
the domain of attraction has been increased, as shown in Figure 6.1. Furthermore, the
fact that the variable ko, attains its lower bound, strongly suggests that the domain
of attraction may be further increased by decreasing this lower bound. Constraining
all the variables between -10 and 10 we get the following solution:

V() = 0.005z% — 0.00016z, 25 + 1022,
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Domain of Attraction
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Figure 6.1: Domain of Attraction

u = —10z, — 0.0048z3.

The minimum value of E achieved is now 10~% and once again we see that the
variable ko; attains its lower bound. The domain of attraction of the system has
been further increased as can be seen in Figure 6.1. Hence, output feedback (i.e.,
partial state feedback) is unable (for the assumed controller structure) to provide
global asymptotic stability. However, the domain of attraction of this system may
be increased at the expense of increased controller authority.

Example 3 (Performance via Output Feedback). It is desired to find an
optimal output feedback controller for the nonlinear system given in Example 1, that
minimizes the performance functional

JIp(u, zp) = /0 (23 + 73 + u?)dt, (6.18)

where z¢ denotes the initial condition of system states. and the output is the state
Z2. A controller structure of the form

u = k011'2 + k03.’L'g, » (619)
is chosen based on the results of Example 2. The solution

u = —10z, — 0.004823, (6.20)
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of Example 2 is chosen as the starting point for the optimization procedure. To
eliminate the dependence of the synthesized controller on the initial condition g
the performance functional is modified as shown earlier. The initial conditions zg
are chosen as the four corners of several symmetric squares about the origin, viz.,
(2,2), (2,—2), (—2,2) and (—2,—2), for z = 0.5,1.5 and 3. That is, a total of 12
initial conditions are chosen from the domain of attraction shown in Figure 6.1. The
closed-loop system is integrated to a time ¢ = 20 seconds, since it is observed that
the contribution to the performance functional becomes negligible after this time.
The optimal controller (for the chosen controller structure) is given by

u = —10z; — 0.773. (6.21)

In this case it is found that the optimal controllers produced for each of the initial
conditions chosen are quite different. Specifically, for points (z,2) and (—z,—2)
the optimal controller gains are high especially for points near the boundary of
the domain of attraction (see Figure 6.1), while for points (-2, 2) and (z,—2) the
optimal controller gains are low. Hence, in this case, while the controller is optimal
in an average sense for the chosen controller structure, the optimality is far from
global. This is inevitable and is the price that must be paid for the unavailability of

measurements of the state z;.

6.4 Conclusion

A constructive procedure for the synthesis of fixed-structure, optimal, state and
output feedback nonlinear controllers has been developed. The first step of this ap-
proach synthesizes stabilizing controllers which increase the domain of attraction of
the closed-loop nonlinear system. The second step determines the member of a set
of stabilizing controllers that optimizes a designer specified performance functional.
Several examples have been used to demonstrate the efficacy of the proposed design
procedure. The examples suggest, that if an appropriate form is chosen for the con-
trol Lyapunov function and the nonlinear controller, both global stability and global
optimality may be obtained. This design method is applicable to general nonlinear
affine systems, since they can always be approximated by polynomial systems. Fur-
thermore, it may also be be applied directly (i.e., without polynomial approximation)
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to certain classes of general nonlinear affine systems, for which the structure of con-
trol Lyapunov functions and controllers are known a priori, or at least an educated

guess can be made based on prior experience.



CHAPTER 7

AN OBJECT-ORIENTED APPROACH TO SEMIDEFINITE
PROGRAMMING

7.1 Introduction

Object-oriented' design and programming has been a major theme in software
engineering in recent years. Traditional design, the main software design paradigm
until about the mid 1980s, concentrates on the actions that a system has to take and
decomposes the system into separate units or modules according to their function-
alities. In object-oriented design a system to be modeled is viewed as a collection
of objects, each of which has its own attributes and the operations performed on an
object or functions acting on an object are also defined in one syntactic unit. Objects
communicate by passing messages or by calling functions from other objects which
provide services. Object-oriented design is developing an object-oriented model of
a system and can be realized (implemented) by object-oriented programming using
languages such as C++, FORTRAN 90, or Smalitalk.

The advantages of object-oriented design and programming have been described
widely elsewhere (Booch, 1994). A short summary will be provided here. First,
an object is an independent entity that is encapsulated in one syntactic unit. The
definition of an object consists of the definition of the attributes of the object along
with operations that can be performed on the object and the services or function
calls provided by the object. Encapsulation hides the implementation details of an
object and makes the program easier to read and modify. Any subsequent change to
the program can be localized, making the resulting program more easily maintained.

The second advantage is information hiding. Definitions of an object which need

not be known to other objects are inaccessible to other objects, preventing them
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from being changed accidentally. In other words, information hiding makes imple-
mentation details of an object inaccessible to other objects. However, the designer
has the freedom to decide what to hide and what not to hide.

The third advantage is code reuse. Inheritance enables the definition of a new
object, which can be viewed as a subclass of an existing object, without having to
repeat some of the details. The new object can inherit attributes or operations from
its ancestor. Inheritance is one way to support reuse of existing objects. There are
different kinds of reuse in object-oriented programming; inheritance is only one of
them.

The object-oriented technology has been accepted in the software engineering
community as a better approach to develop maintainable software for large and
complex systems. The same should apply to large scale numerical computation ap-
plications. Even though efficiency has been the major concern for most numerical
computation applications, for large scale multidisciplinary computations, maintain-
ability and reusability of software components may become the more important con-
sideration.

One of the most popular object-oriented programming languages is C++ (Strous- |
trup 1991), which is used to implement the algorithm of this paper. Some of the
reasons why C++ is so widely used are upward compatibility with C, design empha-
sis on efficiency and performance, and the availability of many useful libraries and
tools. For instance, the Gnu C++ compiler and other tools are available on a wide
range of platforms and provide good performance, programming environments, and
reasonable compliance with ANSI standards.

There are many available libraries such as IML++ (Dongarra et al. 1994b),
SparseLib++ (Dongarra et al. 1994a, Pozo et al. 1994), STL (Stepanov and Lee
1993, Musser and Saini 1996), and others which emphasize numerical computation.
One notable package is LAPACK++, developed by Dongarra et al. (1994a), which
is a C++ interface to LAPACK and BLAS. Dongarra et al. (1994a) has shown
that performance of programs using the package is comparable to calling LAPACK
and BLAS directly, and can at the same time reap the benefits of object-oriented
programming.
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This chapter contains the result of object-oriented design and implementation
of an algorithm for semidefinite programming. Semidefinite programming refers to
minimizing a linear function subject to a linear matrix inequality (Vandenberghe and
S. Boyd 1996a). That is,

min ¢’z (7.1)
zER™

subject toF'(z) > 0,

where
m

F(JJ) = F() +Z$iﬂ,

i=1
c € R™ and Fy,..., F, € R™" are symmetric matrices. F(z) > 0 means that F(z)
is positive semidefinite.

Many problems in controls engineering can be cast in terms of a semidefinite
programming problem (Vandenberghe and Boyd 1996a). Since a semidefinite pro-
gramming problem is a convex optimization problem, which can be solved by interior
point methods (Nesterov and A. Nemirovsky 1994), it has attracted the attention
of many researchers in interior point methods. There is a C implementation of a
primal-dual algorithm for solving the semidefinite programming problem (Vanden-
berghe and Boyd 1996b). A C++ implementation of that primal-dual algorithm
for the semidefinite programming problem is developed here to explore the possible
benefits of object-oriented design. Because of the similarity of the primal-dual algo-
rithm with other interior point algorithms for solving the semidefinite programming
problem, the design and implementation methodology developed here can be easily
modified and applied to other interior point algorithms.

The performance of a C++ implementation of the primal-dual algorithm for
semidefinite programming is compared with the existing C implementation of the
same algorithm from Vandenberghe and Boyd (1996b). While the CPU times of
the two implementations are comparable to each other, the C++ version offers the

advantages mentioned earlier in this section.

7.2 The C++ implementation

The primal-dual algorithm is used in this chapter for solving the semidefinite
programming problem. This algorithm is described in detail in Vandenberghe and

— —
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S. Boyd (1996a) and will not be repeated here. The program is built upon the
LAPACK++ v1.0 package, especially the LaVectorDouble, LaGenMat, LaSymm-
Mat classes, and BLAS++ is used extensively. Several special purpose routines are
added to the LAPACK++ package to accommodate the primal-dual algorithm for
semidefinite programming. The program also uses the iterator object in STL (Stan-
dard Template Library) (Stepanov and Lee 1993, Musser and Saini 1996) to traverse
arrays of objects.

The first major difference between the C' and C++ implementations is the way
the initial data is read in. Unlike C'/Fortran style subroutines, in which one can pass
a pointer/address for a piece of storage and let the subroutine split the storage into
pieces to get the data, C++ objects’ constructors have no such scheme. Initialization
is done by reading a data file.

The second major difference is that because C++’s objects are higher level ab-
stractions, the implementation in C++ is less dependent upon pointer arithmetic for
doing the same computation. There is overhead associated with this higher level of
abstraction, but we will show that the effect on performance is negligible.

7.3 Comparison and discussion of results

Two sets of data are obtained by randomly generating all the matrices Fy, Fj,
-+, Fin, and the vector c. Strictly feasible initial points x4 and Z; are also generated.
The timing results are shown in Table 1. All the timings are done on a HP 712/60
workstation. Both the C' implementation from Vandenberghe and S. Boyd (1996b)
and the C++ implementation are compiled using the Gnu C/C++ compiler version
2.7.2 with the same compiler options. It is clear from Table 7.1 that the performance
penalty for using C++ is only a few percent and decreases as the problem size

increases.
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Table 7.1. Comparison of implementations.

Example 1, n = 40
C++ implementation C implementation
m time (sec) time (sec)
20 4.7 44
30 6.9 6.5
Example 2, n = 100
50 229 222
75 390 381

7.4 Conclusions

We have shown an objected-oriented design and implementation of a semidefinite
programming algorithm. Even though object-oriented technology is being used more
and more widely in industry now, there are not many realistic applications to nu-
merical computation. The programming environments and tools seem to be mature
enough to apply this new methodology, and the performance seems to be comparable
to a non-object-oriented implementation.

However, there are other considerations that have to be taken into account when
applying object-oriented technology. First, it takes time and effort to learn the new
methodology. Second, it is not a trivial task to set up the environment: compiling
all the C++ packages, and verifying that they work correctly, especially when most
of the C++ packages for numerical computation are still in the testing stage. Third,
the resulting code size, i.e., the size of the C++ executable, is about 2.5 times that of
the C executable. With continuing development of object-oriented technology and of
compilers for object-oriented languages, the second problem, will likely be alleviated.
The hardware considerations of the third problem are becoming less of a hindrance
with the advances in the computer industry. We do believe that the benefits of using
object-oriented methodology outweight the currently existing disadvantages.

The design and analysis in this research can be generalized to apply to object—
oriented design and implementation of other interior point algorithms which use
potential reduction to find the optimum.



CHAPTER 8

COST-EFFECTIVE PARALLEL PROCESSING FOR H,/H,,
CONTROLLER SYNTHESIS

8.1 Introduction

H?/H* mixed-norm controller synthesis is an important and interesting tech-
nique in modern control design which provides the means for simultaneously address-
ing H? and H* performance objectives. In practice such controllers provide both
nominal performance (via suboptimal H?) and robust stability (via H*®). Hence
mixed-norm synthesis provides a technique for trading off performance and robust-
ness, a fundamental objective in control design.

The H?/H* mixed-norm problem has been addressed in a variety of settings.
One treatment utilized an H? cost bound as the basis for an auxiliary nonconvex
constrained minimization problem, which is very difficult without the global conver-
gence of homotopy methods. A successful homotopy algorithm based on the Ly form
parametrization has been developed (Ge et al. 1994).

The H?/H™ control design algorithms will be used for controller design of sys-
tems such as the four disk system of Cannon and Rosenthal (1984). This system
is especially representative of the type of vibration control problems that arise in
industrial problems involving rotating turbomachinery. H2/H® design will be used
to develop controllers that are robust with respect to the unmodeled dynamics and
also guarantee a certain measure of nominal performance.

It should be mentioned that H?/H®™ theory has been used in Haddad
(1993g,1994a,1994b) to develop complex structured singular value synthesis (CSSV)
formalisms that a priori fix the structure of both the D-scales and the controller.
Hence, an extension of the algorithms here will enable fixed-structure CSSV con-

troller synthesis that blends H? and H*® performance objectives.
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Practical applications often lead to large dense systems of nonlinear equations
which are time-consuming to solve on a serial computer. For these systems, parallel
processing may be the only feasible answer to these problems. One economical way of
achieving parallelism is to utilize the aggregate power of a network of heterogeneous
serial computers. In industrial environments where interactive design is often the
practice, the parallel code can be easily incorporated into interactive software such
as MATLAB or Mathematica with proper setup of the network computers. To the
engineering users the design environment is the same except that the computation
is faster.

The most expensive part of the homotopy algorithm is the computation of the
Jacobian matrix, which can be parallelized easily to run across an Ethernet network
with little modification of the original sequential code, and which has relatively
large task granularity. There is a trade-off between the programming effort and
the speedup of the parallel program. To obtain a better speedup, other parts of the
homotopy algorithm, such as finding the solution to the Riccati equations and the QR
factorization to compute the kernel of the Jacobian matrix, need to be parallelized
as well.

In this study a homotopy algorithm for the H?/H> controller synthesis problem
is parallelized to run on a network of workstations using PVM (Parallel Virtual
Machine) and an Intel Paragon parallel computer, under the philosophy that as
few changes as possible are to be made to the sequential code while achieving an
acceptable speedup. The parallelized computation is that of the Jacobian matrix,
which is carried out in the master-slave paradigm by functional parallelism, that
is, each machine computes a different column of the Jacobian matrix with its own
data. Unless the Riccati equation solver is parallelized, there is a large amount of
data needed for each slave process at each step of the homotopy algorithm. To avoid
sending too many large messages across the network or among different nodes on the
Intel Paragon, all slave processes repeat part of the computation done by the master
process, which therefore decreases the speedup of the parallel computation.

The speedups of the parallel code are compared as the number of workstations
increases or the number of nodes increases on a Intel Paragon and as the size of the
problem varies. A reasonable speedup can be achieved using an existing network
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of workstation compared to that of using an expensive parallel machine, the Intel
Paragon. It is demonstrated that for a large problem, the approach of using a network
of workstations to parallelism is feasible and practical, and provides an efficient and
economical computational method to parallelize a homotopy based algorithm for

H?/H®™ controller synthesis in a workstation-based interactive design environment.

8.2 The homotopy algorithm

The H,/H,, controller synthesis problem is described in detail in Haddad and
Bernstein (1990), and is not repeated here. It suffices to say that the end problem
is a minimization problem subject to a Riccati equation constraint. The necessary
conditions for an extremum result in a root finding problem which is solved using a
homotopy algorithm.

The homotopy zero curve tracking algorithm (which is a standard globally con-
vergent probability-one homotopy algorithm (Watson et al. 1987b) is

1. Set A:=0, 0 := 6,.
2. Evaluate the homotopy map g and the Jacobian of the homotopy map Dp.

3. Predict the next point Z(0 = (9, A©)) on the homotopy zero curve using,

e.g., a Hermite cubic interpolant.

4. For k := 0,1,2,--- until convergence do Z*+) = Z® _ [Da(ZW)])'p(Z®),
where [Dp(Z)]" is the Moore-Penrose inverse of Dp(Z). Let (6, \;) = Jim Z k),

- 5. If Ay < 1, then set 6 := 6, A := )\, and go to step 2).

6. If \; > 1, compute the solution 8 at A = 1.

8.3 The parallel algorithm

The major part of the computation in Step 2) is that of the Jacobian matrix.
The number of variables in this formulation is n.(m + ) + 1 including A. Each

column of the Jacobian matrix corresponds to the derivative of the homotopy map

- - —
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with respect to one variable and requires the solution of two Lyapunov equations (Ge
et al. 1994). Therefore the time complexity of the Jacobian matrix computation is
O(nc(m+1)(n+n)?). The Bartels and Stewart algorithm finds the real Schur form
of A or AT depending on the Lyapunov equation. Unnecessary factorization can be
avoided if the previous factorization results from the computation of p and D,p are
used.

The primary goal of this study is to make use of the existing code and to achieve
reasonable parallel efficiency economically. The only part of the algorithm that
is parallelized is the Jacobian matrix computation in Step 2). To utilize existing
computer resources such as a network of workstations, the software package PVM
(Parallel Virtual Machine) is used to provide the distributed computing capabilities.

The parallel algorithm follows the master-slave paradigm. The master sends the
index of the column of the Jacobian matrix to be computed to a slave. The slave
computes the corresponding column of the Jacobian, sends the column back to the
master, and waits for the next index from the master to arrive. After receiving a
column of the Jacobian, the master sends another index to the idle slave. In the
implementation for the Intel Paragon, asynchronous send is used whenever possible

to speed up the communication.

4 T T T T T

4
Number of worstations

Figure 8.1: Speedup with master and slaves on different machines

When the algorithm is implemented on a network of workstations, the modifi-
cation to the original sequential source code consists of three parts: the first one is

to spawn slave processes and set up the communication links between the master
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and the slaves; the second is to extract a slave program from the original code and
at the same time simplify the master program; the last is to add a mechanism to
guarantee correct communication between master and slaves. The first part consists
of standard PVM operations, while the second is more problem oriented. To decrease
communication, each slave process repeats part of the computation of p and D,p so
as to minimize message passing through the network. There is no loss of efficiency
since the master is also computing the same quantities. The slave program consists
of mainly the original subroutines with additional code for communication.

For the implementation on the Intel Paragon, the modification of the original code
is even simpler. There is no need for a separate slave program if control statements
use node identification properly. The parent process run on an Intel Paragon always
gets node number 0 while other nodes are numbered bigger than 1 and bigger. The
statement if node_number == 0 precedes the code that is to be executed by the
master and an else following the previous statement will precede the code to be
executed by the slave. The other modification to the original code is similar to the
implementation using PVM. Asynchronous send is used whenever possible. A wait
is used later when the data is needed, to insure correct communication between the

master and the slaves.

4 T T T T T

Number of worstations

Figure 8.2: Speedup when one slave is on the master machine
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8.4 Conclusions

o
Parallelizing the Jacobian matrix computation in a homotopy algorithm reduces

the execution time and is economical, especially for large problems. Acceptable
speedups are obtained for a PVM implementation on a network of workstations. The

PY approach can be applied to real industrial design environments to reduce controller
design time and effectively utilize existing workstation networks. Compared to using
real parallel computers, the approach of utilizing a network of workstations is much
more cost-effective.

o
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CHAPTER 9

ROBUSTNESS ANALYSIS IN THE DELTA-DOMAIN USING
FIXED-STRUCTURE MULTIPLIERS

The development of mixed (i.e., real and complex) structured singular value anal-
vsis and related multiplier-based analysis results (Balakrishnan et al. 1994, Fan et
al. 1991, Haddad et al. 1992, Haddad and Bernstein 1995a, 1993, Haddad and
Kapila 1995af, How and Hall 1993, Ly et al. 1994, Safonov and Chiang 1993, Young
1996) have made a significant impact on the ability of engineers to analyze and design
controllers for uncertain systems in the presence of mixed (i.e., real and complex) un-
certainty. These results are very powerful and should eventually make a large impact
on control engineering practice. However, with the notable exceptions of Haddad and
Bernstein (1993), Haddad and Kapila (1995af), Tchernychev and Sideris (1996), to
date most of these results have focused on the analysis and synthesis of continuous-
time systems. Nevertheless, it is the overwhelming trend to implement controllers
digitally. '

Interfacing a continuous-time system with a digital computer results in an equiva-
lent discrete-time system. Furthermore, in practice bounds on modeling uncertainty
are usually obtained via identification experiments in which the resulting system
models are discrete-time. In this case, it is more natural to represent the nomi-
nal model of the system and its uncertainty in discrete-time. As is well known,
the highest performing discrete-time control laws are developed by directly using a
discrete-time representation of the system as the design model.

The intent of the research presented in this chapter is to further advance mixed
structured singular value analysis for discrete-time systems. The results are devel-
oped using the delta-operator representation of a discrete-time system (Goodwin et
al. 1992, Middleton and Goodwin 1986, 1990) since it has clear advantages over

- - ——"
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the standard forward-shift representation. In particular, the delta-domain represen-
tation avoids the numerical ill-conditioning inherent in the use of the forward-shift
representation, helps to unify the continuous-time and discrete-time results from a
theoretical perspective, can allow the same software algorithms to be used for the
analysis and synthesis of control systems for both continuous-time and discrete-time
svstems, and provides improved performance over standard forward-shift represen-
tations when using finite wordlength computation.

This chapter begins by developing frequency-domain robustness analysis tests
involving frequency-dependent multipliers. These tests involve strictly generalized
positive real and strictly positive real conditions. Hence, in order to develop state
space robustness tests, emphasis is placed on the development of state space linear
matrix inequality (LMI) and Riccati equation tests for the positive real and gener-
alized positive real conditions. By proper construction of the stability multipliers,
LMI robustness tests are then developed. It should be noted that these multiplier
constructions differ significantly from those given in Tchernychev and Sideris (1996)
when both are viewed in either the z-domain or the delta-domain. In fact, when
viewed in the delta-domain (as is done here), unlike the multipliers in Tchernychev
and Sideris (1996), the multipliers here collapse to the continuous-time multipliers of
Collins et al. (1997a), Ly et al. (1994) as T'— 0. The results are then specialized to
the case of delta-domain Popov-type multipliers, which because of their simplicity,
are particularly useful for robust control law design. Note that in general, state space
tests may be used to avoid the frequency-dependent discontinuities that may occur
when applying frequency-domain robustness tests (Young 1996). In addition, they
can be used as the basis for robust, fixed-architecture control design (Collins et al.
1997a, 1997¢, Chiang and Safonov 1992, Goh et al. 1994a, 1994b, How et al. 1994a,
1994b, 1996, Safonov et al. 1994).

9.1 Multiplier Methods in the Robustness Analysis of Delta-Domain
Systems

In this section we consider the standard uncertainty feedback configuration given

AlB
in Figure 9.1, where G(y) € C™*™ is asymptotically stable and G(v) ~ [Fl—D_] LIt
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is assumed that the uncertainty A € C™*™ belongs to the block-diagonal uncertainty
set

Aps = {A = block-diag(Ay, ..., A,) : A; € Iy, i = 1,...,p}, (9.1)
where I; C Cki*ki >P_1 ki = m, denotes the internal structure of the uncertainty
block A;, i € [1,...,p].

(+) 1O G(v) >

Figure 9.1: Standard Uncertainty Feedback Configuration

Theorem 9.1. Suppose G(v) = G(7)[I + MiG(y)]™! is asymptotically stable and

M(y) is the multiplier. If there exists P > 0 such that
~TATPA,— ATP - PA, -TATPB, - PB,+CT 50 (9.2)

~TBYPA,-BfP+C, ~-TBIPB,+D,+ DT ’ '

where (A,, Ba, Ca, D,) is the state space realization of M ()G (7), and T is the sam-
pling period, then the negative feedback interconnection of G(v) and A is asymptot-
ically stable for all A € A.

Theorem 9.2. Suppose G(7) = G(y)[I + MyG(7)]™! is asymptotically stable. If
there exists P > 0 and R > 0 such that

D,+ DT - TBTPB, > 0, (9.3)

0 = TAIPA,+ AP+ PA,
[Bi (TAy+1) — Co]"(Dy + DY — TBIPB,) Y [BI (T A, + I) — C,]"(9.4)
+R. (9.5)
where (Aa, Ba, Ca, D,) is the state space realization of M(y)G(7), and T is the sam-

pling period, then the negative feedback interconnection of G(7) and A is asymptot-
ically stable for all A € A.

- - ——
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9.2 Illustrative Numerical Example

To illustrate the delta-domain robustness analysis framework presented in the
previous sections, we consider the two mass/spring benchmark system with uncertain
stiffness k. For a detailed discussion of this benchmark problem, refer to Collins
(1997a) and the references therein.

Using Popov analysis (Haddad 1995a) this controller guarantees robust stability
for the range 0.334 < k < 2.166 which corresponds to the actual stability margin
with 7 = Dachievea = 0.916.

Next we compare the g-domain (i.e., forward shift representation) and §-domain
robust stability tests for the Popov-type multipliers

_ 2y
M(y)=H+ Ny, (9.6)
¥(2 +~T)
Myy=H+ N———+ 9.7
_ Y
M(y)=H+Ni— T (9.8)

where H and N are real and diagonal and H > 0. It can be shown that these
are compatible multipliers. These will be referred to as Multipliers 1, 2, and 3,
respectively.

The g-domain equivalent for a fixed sampling period T of Multipliers 1, 2, and
3 were obtained by simply replacing M () with M(z) where z = 1+ 7. In order
to simplify the continuous-time to discrete-time conversions and considering the fact
that we are interested in small sampling periods, we neglect higher-order terms in
the sampling period associated with the uncertainty AA,. This yields

T
Apg(A) = ™% + TAA,,  Byg = /O e4»T-7) B dr,

and
1
T

For the ¢ and ¢ conversions C, remains unchanged. Similar conversions can be

1 T
Aps(A) = ‘f(eTAP —I)+ A4, + E(ApAAp +AAp4), Bys = =By

obtained for the controller. Note that the d-domain representation of the plant
collapses to the continuous-time representation as the sampling period T — 0.

- - —
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The robustness tests for the ¢g-domain and é-domain are formulated as LMI feasi-
bility problems with varying sampling periods for Multipliers 1, 2, and 3. Figure 9.2
shows the comparison of the allowable uncertainty predictions for the ¢g-domain and
d-domain using Multipliers 1, 2, and 3. It is clear from the figure that as T — 0 the
robustness tests for the d-domain representation continue to track the continuous-
time robustness analysis predictions while the g-domain formulation fails to recover

the continuous-time robustness boundaries.

1 y T T T v T T T
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I [ AR Fo R 0 g-domain: Multiplier 1
d-domain: Multiplier 2
0.2r o——o g-domain: Multiplier 2 l
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01 y e --0 g-domain: Multiplier 3 7
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Figure 9.2: Comparison of the g-domain and §-domain robustness predictions as a
function of sampling period T

9.3 Conclusion

A general theory for the robustness analysis of delta-domain systems using mul-
tiplier theory was presented. The results are in terms of delta-domain generalized

positive real conditions and are analogous to those for continuous-time systems. To
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develop state space robustness analysis tests, LMI and Riccati equation characteri-
zations of generalized positive real conditions for delta-domain systems were devel-
oped. Subsequently, for the special case of Popov-type multipliers, both LMI and
Riccati equation robustness tests were developed. The results were illustrated with
a numerical example. A significant contribution of the results was the development
of the Popov-type multipliers since the z-domain version of these multipliers (with
the exception of the Popov-Tsypkin multiplier) have not appeared in the existing

literature.



REFERENCES

[1] ADAMS, R. J. and BANDA, S. S., 1993, Robust flight control design using
dynamic inversion and structured singular value synthesis. IEEE Transactions
on Control Systems Technology, 1, 80-92.

[2] ALLGOWER, E. L. AND GEORG, K., 1990, Numerical Continuation Methods
(New York: Springer-Verlag).

[3] ANDERSON, B. D. O. and MOORE, J. B., 1968, Algebraic structure of gener-
alized positive real matrices. SIAM Journal of Control, 6, 615-624.

[4] ANDERSON, B.D.O AND VONGPANITLERD, S., 1973, Network Analysis and
Synthesis: A Modern Systems Theory Approach (Eaglewood Cliffs, NJ: Prentice
Hall). ’

[5] B. D. O. Anderson and Liu, Y., 1989, Controller reduction: concepts and ap-
proaches. IEEE Transactions on Automatic Control, 34, 802-812.

[6] ANDERSON, B. D. O. AND MOORE, J. B., 1991, Optimal Control, Linear
Quadratic Methods (Prentice-Hall, Englewood Cliffs, NJ).

[7] APKARIAN, P., CHRETIEN, J. P., GAHINET, P., and BIANNIC, J. M., 1993,
u synthesis by D — K iteration with constant scaling. Proceedings of the Amer-
ican Control Conference, San Francisco, CA, pp. 3192-3190.

[8] BALAKRISHNAN, V., HUANG, Y., PACKARD, A., and DOYLE, J., 1994,
Linear matrix inequalities in analysis with multipliers. Proceedings of the Amer-
ican Control Conference, Baltimore, MD, pp. 1228-1232.

[9] BALAS, G. J., CHU, C., and DOYLE, J. C., 1989, Vibration damping and
robust control of the JPL/AFAL experiment using p synthesis. Proceedings of
the Conference on Decision and Control, Tampa, FL, pp. 2689-2694.

[10] BARTELS, R. H., and STEWART, G. W., 1972, Solution of matrix equation
AX + X B=C. Comm. of the ACM, 15, 820-826.

(11] BENJAMIN/CUMMINGS, 1994, Object Oriented Design with Applications,
second edition, Redwood City, CA, 1994.

69



70

[12] BERNSTEIN, D. S., and HADDAD, W. M., 1989, LQG control with an H,
performance bound: A Riccati equation approach. IEEE Transactions on Au-
tomatic Control, AC-34, 293-305.

[13] BESELER, CHOW AND MINTO, 1992, A feedback descent method for solv-
ing constrained LQG control problems. Proceedings of the American Control
Conference, pp. 1044-1048.

[14] BODE, H. W., 1945, Network Analysis and Feedback Amplifier Design (Von
Nostrand, Princeton, NJ).

[15] BOYD, S., and EL. GHAOQUI, L., 1993, Method of centers for minimizing gen-
eralized eigenvalues. Linear Algebra Appl.,, special issue on Numerical Linear
Algebra Methods in Control, Signals and Systems, 188, 63-111.

[16] BOYD, S., EL GHAOUI, L., FERON, E., and BALAKRISHNAN, V., 1994,
Linear matrix inequalities in systems and control theory. SIAM, Philadelphia.

[17) BOYD, S., VANDENBERGHE, L., and GRANT, M., 1994g, Efficient convex
optimization for engineering design. Proceedings of the IFAC Symposium on
Robust Control Design, Rio de Janeiro, Brazil, Sept., 14-23.

(18] BRAATZ, R., AND MORARI, M., 1992, Robust control for a noncollocated
spring-mass system. Journal of Guidance, Control, and Dynamics, 15, 1103-
1110.

[19] BRYSON A. E., and HO, Y., 1975, Applied Optimal Control (Hemisphere Pub-
lishing Corporation).

[20] BUSCHEK, H. and CALISE, A., 1997, u controllers: Mixed and Fixed Journal
of Guidance, Control, and Dynamics, 20, 34-41.

[21] CANNON, R. H. and ROSENTHAL, D. E., 1984, Experiments in control of flex-
ible structures with noncolocated sensors and actuators. Journal of Guidance,
Control and Dynamics, 7, 546-553.

[22] CHIANG,R. Y. and SAFONOV, M. G., 1992, Real K,,-synthesis via generalized
Popov multipliers. Proceedings of the American Control Conference, Chicago,
IL, pp. 2417-2418.

[23] CHIANG, R. Y., 1994, Parametric robustness analysis for Cassini Spacecraft
using the LMI approach without frequency sweep. Proceedings of the American
Control Conference, Baltimore, Maryland, pp. 1219-1222.

- ¢ —



24]

[25]

[26]

[27]

[28]

[29]

[32]

[33]

[34]

71

COLLINS, E. G. JR., HADDAD, W. M., and DAVIS, L. D., 1994b Riccati
equation approaches for small gain, positivity, and Popov robustness analysis.
Journal of Guidance, Control and Dynamics, 17, 322-329.

COLLINS, E. G. JR., DAVIS, L. D., and RICHTER, S., 1995, Design of reduced-
order, H, optimal controllers using a homotopy algorithm. International Journal
of Control, 61, 97-126.

COLLINS, E. G. JR., HADDAD. W. M., and YING, S. S., 1996a, Nearly non-
minimal Linear-Quadratic-Gaussian compensators for reduced-order control de-
sign initialization. Journal of Guidance, Control and Dynamics, 19, 259-261.

COLLINS, E. G. JR., YING, S. S., and HADDAD, W. M., 1996b, Reduced-
order dynamic compensation using the Hyland and Bernstein optimal projection
equations. Journal of Guidance, Control, and Dynamics, to appear.

COLLINS, E. G. JR., HADDAD, W. M., and WATSON, L. T., 1996¢c, Fixed-
architecture robust control design using fixed-structure multipliers. Proceedings
of the International Federation of Automatic Control, Vol. C, pp. 73-78.

COLLINS, E. G. HADDAD, W. M., WATSON, L. T., and SADHUKHAN,
D., 1997a, Probability-one homotopy algorithms for robust controller synthesis

with fixed-structure multipliers. International Journal of Robust and Nonlinear
Control, 7, 165-185.

COLLINS, E. G. JR. and SADHUKHAN, D., 1997b, Synthesis of fixed-
architecture, robust H, and Hoo controllers, Proceedings of the American Con-
trol Conference, 67-71.

COLLINS, E. G. AND SADHUKHAN, D., 1998, Robust controller synthesis
via nonlinear matrix inequalities. Proceedings of the 1998 American Control
Conference. To appear.

COPLIEN, J. O., 1992, Advanced C++, Programming Styles and Idioms,
Addison-Wesley, Redwood City, CA.

DAVIS, L. D., COLLINS, E. G. JR., and HODEL, A. S., 1994, A parameteriza-
tion of minimal plants. IEEE Transactions on Automatic Control, 39, 849-852.

DAVISON, E. J. AND KURAK E. M., 1971, A computational method for de-
termining quadratic Lyapunov functions for non-linear systems. Automatica, 7,
627-636.

- —



72

[35] DENERY, D. G., 1971, An identification algorithm that is insensitive to initial
parameter estimates. ATAA Journal, 9, 371-377.

[36] DONGARRA, J., POZO, R., and WALKER, D., 1993, LAPACK++: A de-
sign overview of object-oriented extensions for high performance linear algebra,
Proceedings of Supercomputing ’93, IEEE Press, 162-171.

[37) DONGARRA, J., LUMSDAINE, A., POZO, R., REMINGTON, K., 1994a, A
Sparse Matrix Library in C++ for High Performance Architectures, Proceedings
of the Second Annual Object-Oriented Numerics Conference, 214-218.

[38] DONGARRA, J, LUMSDAINE, A, POZO,
R., REMINGTON, K., 1994b, IML++ Iterative Methods Library Reference
Guide. http://gams.nist.gov/acmd/Staff/RPozo/sparselib++.html.

[39] DOYLE, J. C., 1978, Guaranteed margins for LQG regulators. IEEE Transac-
tions on Automatic Control, 23, 756-757.

[40] DOYLE, J. C., and STEIN, G., 1981, Multivariable feedback design: concepts
for a classical/modern synthesis. IEEE Transactions on Automatic Control, 26,
4-16.

[41] DOYLE, J. C., 1982a, Analysis of feedback systems with structured uncertain-
ties’, Proceedings of the IEE - Part D, pp. 242-250.

[42] DOYLE, J.C., WALL, J. E., and STEIN, G., 1982b, Performance and robustness
analysis for structured uncertainty. Proceedings of the 21st IEEE Conference on
Decision and Control, Orlando, FL, pp 629-636.

[43] DOYLE, J. C., 1985, Structured uncertainty in control design. Proceedings of
the IEEE Conference on Decsion and Control, 260-265.

[44] DOYLE, J., PRIMBS, J. A., SHAPIRO, B., and NEVISTIC, V., 1996, Nonlin-
ear games: Examples and counterexamples. Proceedings of the IEEE Conference
on Decision and Control, Kobe, Japan, 3915-3920.

[45] ERWIN, R. S., 1993, Private communication.

[46] FAN, M. K. H., TITS, A. L., and DOYLE, J. C., 1991, Robustness in the pres-
ence of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans-
actions on Automatic Control, AC-36, 25-38.



73

[47] FLETCHER, R., 1987, Practical Methods of Optimization (Second Edition,
John Wiley and Sons, New York).

[48] FRANCIS, B. A., 1987, A Course in Hy, Control Theory (Springer-Verlag, New
York).

[49] FREEMAN, R. and KOKOTOVIC, P., 1996, Inverse Optimality in robust sta-
bilization. SIAM Journal on Optimization and Control, 34, 1365-1391.

[50] GAHINET, P., NEMIROVSKII, A., LAUB, A., and CHILALIL, M., 1995, LMI
Control Toolbox (The Math Works, Inc.).

[51] GE, Y., COLLINS, E. G., JR., and WATSON, L. T, 1994, A homotopy al-
gorithm for full and reduced order mixed norm H,/H,, synthesis. Proceedings

of the IEEE Conference on Decision and Control, Orlando, FL, pp. 2672-2677.
(Also submitted to Optimal Control Applications and Methods.)

[52] GEIST, G. A., 1991, Reduction of a general matrix to tridiagonal form. STAM
Journal of Matriz Analysis and Applications, 12, 362-373.

[53] GEIST, S., et al., 1993, PVM 3 User’s Guide and Reference Manual, Oak Ridge
National Laboratory.

[54] GOH, K. C., LY, J. H,, TURAN, L., and SAFONOV, M. G., 1994a, u/K,,
synthesis via bilinear matrix inequalities. Proceedings of the IEEE Conference
on Decision and Control, Orlando, FL, pp. 2032-2037.

[65] GOH, K. C., SAFONOV, M. G., and PAPAVASSILOPOULUS, G. P., 1994b,
Global optimization approaches for the biaffine matrix inequality problem. Pro-
ceedings of the IEEE Conference on Decision and Control, Orlando, FL, pp.
2009-2014.

[66] GOH, K. C., TURAN, L., and SAFONOV, M. G., 1994c, Biaffine matrix in-
equality properties and computational methods. Proceedings of the IEEE Con-
ference on Decision and Control, pp. 2009-2014.

[57] GOODWIN, G. C., MIDDLETON, R. H., and POOR, H. V., 1992, High-speed
digital signal processing and control. Proceedings of the IEEE, 80, 240-259.

[58] GRACE, A., 1992, Optimization Toolboz: Users Guide (The Mathworks Inc.)



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

74

HADDAD, W. M., and BERNSTEIN, D. S., 1990, Generalized Riccati equations
for the full- and reduced-order mixed-norm H,/H,, standard problem. Systems
and Control Letters, 14, 185-197. :

HADDAD, W. M. and BERNSTEIN, D. S., 1991, Parameter-dependent Lya-
punov functions, constant real parameter uncertainty, and the Popov criterion
in robust analysis and synthesis, Part 1, Part 2. Proceedings of the IEEE Con-
ference on Decision and Control, Brighton, U.K., pp. 2274-2279, pp. 2632-2633.

HADDAD, W. M., HOW, J. P, HALL, S. R., and BERNSTEIN, D. S., 1992,
Extensions of mixed-y bounds to monotonic and odd monotonic nonlinearities
using absolute stability theory, Part 1, Part 2. Proceedings of the IEEE Confer-
ence on Decision and Control, Tuscon, AZ, pp. 2813-2819, pp. 2820-2823.

HADDAD, W. M. and BERNSTEIN, D. S., 1993, Explicit construction of
quadratic Lyapunov functions for the small gain, positivity , circle, and Popov
theorems and their application to robust stability, Part I: Continuous-Time The-
ory. International Journal of Robust and Nonlinear Control, 3, 313-339.

HADDAD, W. M., COLLINS, E. G. JR., and MOSER, R., 1993g, Fixed struc-
ture computation of the structured singular value. Proceedings of the American
Control Conference, San Francisco, CA, 1673-1674.

HADDAD, W. M., COLLINS, E. G., JR., and MOSER, R., 1994a, Structured
singular value controller synthesis using constant D-scales without D-K iter-
ation. Proceedings of the American Control Conference, Baltimore, MD, pp.
2819-2823. (Also in International Journal of Control, 1996, 63, 813-830.)

HADDAD, W. M., COLLINS, E. G., JR., and MOSER, R., 1994b, Complex
structured singular value analysis using fixed structure dynamic D-scales’, Pro-
ceedings of the IEEE Conference on Decision and Control, Orlando, FL, pp.
3003-3008. (Also to appear in Mathematical Modeling of Systems.)

HADDAD, W. M., HbW, J. P.,, HALL, S. R., and BERNSTEIN, D. S., 1994c,
Extensions of mixed-x bounds to monotonic and odd monotonic nonlinearities
using absolute stability theory. International Journal of Control, 60, 905-951.

HADDAD, W. M. and BERNSTEIN, D. S., 1995a, Parameter-dependent Lya-
punov functions and the Popov criterion in robust analysis and synthesis. IEEE
Transactions on Automatic Control, AC-40, 536-543.

- —



75

[68] HADDAD, W. M., BERNSTEIN, D. S., and CHELLABOINA, V. S., 1995b,
Generalized mixed-u bounds for real and complex multiple-block uncertainty
with internal matrix structure. Proceedings of the American Control Conference,
Seattle, WA, pp. 2843-2847.

[69] HADDAD, W. M. and KAPILA, V., 1995af, Discrete-time extensions of mixed-
4 bounds to monotonic and odd monotonic nonlinearities. International Journal
of Control, 61, 423-441.

[70] HADDAD, W. M., BERNSTEIN, D. S., and CHELLABOINA, V. S., 1996,
Generalized mixed-y bounds for real and complex multiple-block uncertainty
with internal matrix structure. International Journal of Control, 64, 789-806.

[71] HADDAD, W. M., KAPILA V., AND CHELLABOINA V. S., 1997, Guaran-
teed domains of attraction for multivariable Luré systems via open Lyapunov
surfaces. International Journal of Robust and Nonlinear Control, 7, 935-949.

[72] HADDAD, W. M., CHELLABOINA, V., and FAUSZ, J. L., 1998, Robust non-
linear feedback control for uncertain linear systems with nonquadratic perfor-
mance criteria. Systems and Control Letters, to appear.

[73] HAHN, W., 1967, Stability of Motion (Berlin, DE, Springer Verlag).

[74] HENSON M. A. and SEBORG, D. E., 1996, Nonlinear Process Control (Prentice
Hall).

[75] HITZ, L. and ANDERSON, B. D. O., 1969, Discrete positive-real functions and
their applications to system stability. Proceedings of the IEEE, 118, 153-155.

[76] HOW, J. P. and HALL, S. R., 1993, Connections between the Popov stability
criterion and bounds for real parameter uncertainty’, Proceedings of the Amer-
ican Control Conference, San Francisco, CA, pp. 1084-1089.

[77] HOROWITZ, 1.,1963, Synthesis of Feedback Systems (Academic Press, New
York).

(78] HOW, J. P., HADDAD, W. M., and HALL, S. R., 1994a, Application of Popov
controller synthesis to benchmark problems with real parameter uncertainty.
AIAA Journal of Guidance, Control and Dynamics, 17, 759-768.

[79] HOW, J. P, HALL, S. R., and HADDAD, W. M., 1994b, Robust controllers for
the middeck active control experiment using Popov controller synthesis’, IEEE
Transactions on Control Systems Technology, 2, 73-87.

- —



76

[80] HOW, J. P., COLLINS, E. G. JR., and HADDAD, W. M., 1996, Optimal Popov
controller analysis and synthesis for systems with real parameter uncertainty.
IEEE Transactions on Control Systems Technology, 4, 200-207.

[81] Hyland, D. C. and Bernstein, D. S., 1984, The optimal projection equations for
fixed-order dynamic compensation. IEEE Transactions on Automatic Control,
29, 1034-1037.

[82] IWASAKI, T., 1993, A unified matriz inequality approach to linear control de-
sign, Ph.D. Dissertation, Purdue University.

[83] JENKINS, H. E., KURFESS, T. R., and DORF, R. C., 1996, Design of a ro-
bust controller for a grinding system. IEEE Transactions on Control Systems
Technology, 4, pp. 40-49.

[84] KAILATH, T., 1980, Linear Systems (Prentice-Hall, New Jersey).

[85] KALMAN, R. E., 1960, A new approach to linear filtering and prediction prob-
lems. Journal of Basic Engineering, Transactions of the ASME, 82 D, 35-45.

[86] KALMAN, R. E., 1964, When is a linear control system optimal. Journal of
Basic Engineering, Transactions of the ASME, 86 D, 51-60.

[87] KALMAN, R. E., and BUCY, R. S., 1961, New results in linear filtering and
prediction theory. Journal of Basic Engineering, Transactions of the ASME, 83
D, 95-108.

[88] KAPILA, V. and HADDAD, W. M., 1996, A multivariable extension of the
Tsypkin criterion using a Lyapunov function approach. IEEE Transactions on
Automatic Control, 41, 149-152.

(89] KHALIL, H. K., 1996, Nonlinear Systems (Prentice Hall, Upper Saddle River,
NJ).

[90] KOU, R. S., ELLIOT, D. L., and TARN, T. J., 1975, Exponential observers for
nonlinear dynamic systems. Information and Control, 29, 204-216.

[91] KRAMER, F. S., and CALISE, A. J., 1987, Fixed-order dynamic compensation
for multivariable linear systems. Journal of Guidance and Control, 11, 80-85.

[92] KUHN, U., and SCHMIDT, G., 1987, Fresh look into the design and com-
putation of optimal output feedback controls for linear multivariable systems.
International Journal of Control, 46, 75-95.

- o —



77

(93] KWAKERNAAK, H., and SIVAN, R., 1972, Linear Optimal Control Systems
(Wiley-Interscience).

[94] LASALLE J. AND LEFSCHETZ S., 1961, Stability by Lyapunov’s Direct
Method with Applications, 58-59 (Academic Press, New York).

[95] LAUB, A., 1979, A Schur method for solving algebraic Riccati equations. IEEE
Transactions on Automatic Control, AC-24, 913-921.

[96] LIU, Y., ANDERSON, B. D. O., and LY, U. L., 1990, Coprime factorization
controller reduction with Bezout identity induced frequency weighting. Auto-
matica, 26, 233-249.

[97] LOPARO, K. AND BLANKENSHIP G. L., 1978, Estimating the domain of at-
traction of nonlinear feedback systems. IEEE Transactions on Automatic Con-
trol, 23, 602-608.

[98] LY, U. L., BRYSON, A. E., and CANNON, R. H., 1985, Design of low-order
compensators using parameter optimization. Automatica, 21, 315-318.

(99] LY, J. H., SAFONOV, M. G., and CHIANG, R. Y., 1994, Real/Complex mul-
tivariable stability margin computation via generalized Popov multiplier - LMI
approach. Proceedings of the American Control Conference, Baltimore, MD, pp.
425-429.

[100] LUENBERGER, D. G., 1984, Linear and Nonlinear Programming, 2nd Edition
(Addison Wesley).

[101] MACKIEJOWSKI, J. M., 1989, Multivariable Feedback Design, (New York,
Addison-Wesley).

(102] MAHMOUD, N. A. and KHALIL, H. 1996, Asymptotic regulation of Min-
imum phase nonlinear systems using output feedback IEEE Transactions on
Automatic Control, 41, 1402-1412.

[103] MAKILA, P. M., and TOIVONEN, T., 1987, Computational methods for para-
metric LQ problems - a survey. IEEE Transactionson on Automatic Control, 32,
658-671.

[104] MARINO, R. and TOMEI, P., 1995, Nonlinear Control Design (Prentice Hall).

[105] MARTIN, G. D., and BRYSON, A. E., JR., 1980, Attitude control of a flexible
spacecraft. Journal of Guidance, Control and Dynamics, 3, 37-41.

- - —



78

[106] MERCADAL, M., 1991, Homotopy approach to optimal, linear quadratic, fixed
architecture compensation. Journal of Guidance, Control and Dynamics, 14,
1224-1233.

[107] MICHEL, A. N., MILLER R. K. AND NAM B. H., 1982, Stability analysis
of interconnected systems using computer generated Lyapunov functions. IEEE
Transactions on Circuits and Systems, 29, 431-440.

[108] MIDDLETON, R. H. and GOODWIN, G. C., 1986, Improved finite word
length characteristics in digital control using delta operators. IEEE Transac-
tions on Automatic Control, 31, 1015-1021.

[109] MIDDLETON, R. H. and GOODWIN, G. C., 1990, Digital Control and Eétz‘-
mation: A Unified Approach, Prentice Hall, Englewood Cliffs, NJ.

[110] MOYLAN, P. and ANDERSON, B. D. O., 1973, Nonlinear regulator theory
and an inverse optimal control problem. IEEE Transactions on Automatic Con-
trol, 18, 460-465.

[111] MUKHOPADHYAY, V., NEWSOM, J. R., and ABEL, ., 1982, Reduced-order
optimal feedback control law for flutter suppression. Journal of Guidance and
Control, 5, 389-395.

[112] MUKHOPADHYAY, V., 1987, Stability robustness improvement using con-
strained optimization techniques. Journal of Guidance and Control, 10, 172-
177.

(113] MUKHOPADHYAY, V., 1989, Digital robust control law synthesis using con-
strained optimization. Journal of Guidance and Control, 12, 175-181.

[114] MUSSER, D. R., and SAINI, A., 1996, C++ Programming with the Standard
Template Library Addison-Wesley Professional Computing Series, Reading, MA.

[115] NEMIROVSKII, A. and GAHINET, P., 1994, The projective method for solv-
ing linear matrix inequalities, Proceedings of the American Control Conference,
pp. 840-844.

[116] NESTEROV, Y., and NEMIROVSKY, A., 1994, Interior-point polynomial
methods in convex programming, 1994, Studies in Applied Mathematics, 13,
Philadelphia, PA.



79

[117] NETT, C. N., JACOBSON, C. A., and BALAS, M. J., 1984, A connection be-
tween state-space and doubly coprime fractional representations. IEEE Trans-
actions on Automatic Control, AC-29, 831-832.

[118] NYQUIST, H., 1932, Regeneration theory. Bell. Sys. Tech. J., 11, 126-147.

[119] DE OLIVEIRA, M. C., and GEROMEL, J. C., 1997, Numerical comparison of
output feedback design methods. American Control Conference, 1, pp. 72-76.

[120] PACKARD, A. and DOYLE, J. C., 1993, The complex structured singular
value. Automatica, 29, 71-109.

[121] PARLETT, B. N., 1992, Reduction to tridiagonal form and minimal realiza-
tion. STAM Journal of Matriz Analysis and Applications, 12, 567-593.

[122] PONTRYAGIN, L. S., BOLTYANSKII, V. G., GAMKRELIDZE, R. V., and
MISCHENKQO, E. F., 1962, The Mathematical Theory of Optimal Process (In-
terscience, New York).

[123] POZO,
R., REMINGTON, K. A., and LUMSDAINE, A., 1994, SparseLib++ v. 1.3,
Reference Guide, http://gams.nist.gov/acmd/Staff/RPozo/sparselib++.hitml.

[124] SAFONOV, M. G., and ATHANS, M., 1977, Gain and phase margins for
multloop LQG regulators. IEEE Transactions on Automatic Control, 22, 173-
179.

[125] SAFONOV, M. G., 1980, Stability and robustness of multivariable feedback
systems (MIT Press, Cambridge, MA).

[126] SAFONOV, M. G. and ATHANS, M., 1981, A multiloop generalization of the
circle criterion for stability margin analysis. IEEE Transactions on Automatic
Control, AC-26, 415-422.

[127] SAFONOV, M. G., 1982, Stability margins of diagonally perturbed multivari-
able systems. Proceedings of the IEE, 129-D, 251-256.

[128] SAFONOV, M. G. and CHIANG, R. Y., 1993, Real/Complex p without curve
fitting’, Control and Dynamic Systems, 56, New York: Academic Press, 303-324.

[129] SAFONOV, M. G., GOH, K. C., and LY, J. H., 1994, Control system synthesis
via bilinear matrix inequalities. Proceedings of the American Control Conference,
Baltimore, MD, pp. 45-49.



80

[130) SAFONOV, M. G., FAN, M. K. H., 1997, Editorial. International Journal of
Robust and Nonlinear Control, 7, pp. 97-103.

[131] SEPULCHRE, R., JANKOVIC M., and KOKOTOVIC P., 1997, Constructive
Nonlinear Control (Springer).

[132] SKOGESTAD, S. and POSTLETHWAITE, 1., 1996, Multivariable Feedback
Control (John Wiley and Sons).

[133] SLOTINE, J. E. and LI, W., 1991, Applied Nonlinear Control (Prentice Hall,
Englewood Cliffs, New Jersey).

[134] STEIN. G and ATHANS, M., 1987, The LQG/LTR procedure for multivariable
feedback control design. IEEE Transactions on Automatic Control, 32, 105-114.

[135] STEPANOV, A, and
LEE, M., 1993, The Standard Template Library, http://www.cs.rpi.edu/projects
/STL/stl-new/stl-new.html.

[136] STROUSTRUP, B., 1991, The C++ Programming Language, 2nd ed. Addison-
Wesley, Reading, MA.

[137] TARANTO, G. N. CHOW, J. H., and OTHMAN, H. A., 1995, Robust redesign
of power system damping controllers. IEEE Transactions on Control Systems
Technology, 3, pp. 290-298.

[138] TCHERNYCHEV, A. and SIDERIS, A., 1996, A multiplier approach for the
robust design of discrete-time control systems with mixed real/complex uncer-

tainties. Proceedings of the IEEE Conference on Decision and Control, Kobe,
Japan, 3484-3489.

[139] THAU, F. E., 1973, Observing the state of non-linear dynamic systems. Inter-
national Journal of Control, 3, 471-479.

[140] TOIVONEN, H. T. and MAKILA, P. M., 1987, On Newton’s method for solv-
ing parametric linear quadratic control problems. International Journal of Con-
trol, 21, pp. 743-744.

[141] TSYPKIN, Y. Z., 1964, A criterion for absolute stability of automatic pulse
systems with monotonic characteristics of the nonlinear element. Sov. Phys.
Doklady, 9, 263-266.




81

[142] VANDENBERGHE, L., and BOYD, S., 1996a, Semidefinite Programming,
SIAM Review, 38, 49-95.

[143] VANDENBERGHE, L, and BOYD, S., 1996b, Software for Semidefinite Pro-
gramming, User’s Guide. preprint.

[144] VANNELLI, A. and VIDYASAGAR M., 1985, Maximal Lyapunov functions
and domains of attraction for autonomous nonlinear systems. Automatica, 21,
69-80.

[145] VIDYASAGAR, M., 1985, Control System Synthesis: A Factorization Ap-
proach (Cambridge, MA: MIT Press).

[146] VIDYASAGAR, M., 1993, Nonlinear System Analysis (New Jersey: Prentice
Hall).

[147] DE VILLEMAGNE, C., and SKELTON, R. E., 1988, Controller reduction
using canonical interactions. IEEE Transactions on Automatic Control, 33, 740-
750.

[148] VOTH, C., and LY, U. L., 1991, Design of a total energy control autopilot
using constrained parameter optimization. Journal of Guidance, Control and
Dynamics, 14, 927-935.

[149] WATSON, L. T., 1987a, Numerical linear algebra aspects of globally convergent
homotopy methods. STAM Review, 28, 529-545.

[150) WATSON, L. T., BILLUPS, S. C., and MORGAN, A. P., 1987b, Algorithm
652: HOMPACK: A suite of codes for globally convergent homotopy algorithms.
ACM Transactions on Mathematical Software, 13, 281-310.

[151] WEI, B. and BERNSTEIN, D. S., 1992, Benchmark problems for robust control
design. Journal of Guidance, Control, and Dynamics, 15, 1057-1059.

[152] WEN, J. T., 1988, Time domain and frequency domain conditions for strict
positive realness’, IEEE Transactions on Automatic Control, 3, 988-992.

[153] Whorton, M., Buschek, H., and Calise, A. J., 1994, Homotopy algorithm for
fixed-order H, and H,, design, Proceedings of the AIAA Guidance, Navigation
and Control Conference, 988-992.

[154] WONG, P. K., 1975, On the interaction structure of linear multi-input feedback
control systems Masters Thesis, MIT, 988-992.

- ——



82

[155] YING, S., 1993, Reduced-order Hy modeling and control using the optimal pro-
Jjection equations: theoretical issues and computational algorithms, Ph.D. Dis-
sertation, Florida Institute of Technology, Melbourne, Florida.

[156] YOUNG, P. M.,1993, Robustness with parametric and dynamic uncertainty,
Ph.D. Dissertation, California Institute of Technology, Pasadena, CA.

[157] YOUNG, P. M., 1996, Controller design with real parametric uncertainty. In-
ternational Journal of Control, 65, 469-509.

[158] YOUSUFF, A. and SKELTON, R. E., 1984a, A note on balanced controller
reduction. IEEE Transactions on Automatic Control, 29, 254-257.

(159] YOUSUFF, A. and SKELTON, R. E., 1984b, Controller reduction by controller
cost analysis. IEEE Transactions on Automatic Control, 29, 520-530.

[160] ZAHEER-UDDIN, M., PATEL, R. V., and AL-ASSADI, S. A. K., 1993, Design
of decentralized robust controllers for multizone space heating systems. IEEE
Transactions on Control Systems Technology, 1, 246-261.

[161] ZAMES, G., 1981, Feedback and optimal sensitivity: model reference trans-
formations, multiplicative seminorms and approximate inverses. IEEE Transac-
tions on Automatic Control, 26, 301-320.

[162] ZUBOV, V. 1, 1964, Methods of A. M. Lyapunov and their applications,
Groninger, NL, P. Noordhoff.



